期刊文献+

基于Skip-gram模型的社区查询算法 被引量:3

Community search based on Skip-gram
下载PDF
导出
摘要 社会网络的巨大规模和复杂结构使得探索整个网络的社区结构的代价变得高昂。因此,着眼于网络局部结构特征的社区查询有着重要的应用意义。常见的社区查询算法易将与查询无关的子结构合并到目标社区中。利用Skip-gram模型将序列化后的社会网络映射到连续的向量空间以求解节点之间的相似度,并结合节点的度这个属性特征修正了原有的社区尺度,以此作为标准进行节点聚类,从而得到查询节点所属的社区结构。经过在真实数据集上的实验,改进的社区查询算法的准确性和查询一致性较已有算法有了较大提高。 The huge size and complex structure of the social network make it impossible to explore the community structure of the whole network.Therefore,the community search,which focuses on the local community structure,has important research significance.Previous community-search algorithms usually combine irrelevant structures into the target community.This paper uses the Skip-gram model to learn the latent representations of networks,and uses the new goodness metric of community which combines the similarity and degree of the nodes together to find the target community.The experiments on real networks demonstrate the accuracy and consistency of the new algorithm.
作者 廖宇 朱福喜 刘世超 LIAO Yu;ZHU Fuxi;LIU Shichao(School of Computer Science,Wuhan University,Wuhan 430072,China;School of Computer Science and Technology,Hankou University,Wuhan 430212,China)
出处 《计算机工程与应用》 CSCD 北大核心 2018年第8期143-148,共6页 Computer Engineering and Applications
基金 国家自然科学基金(No.61272277)
关键词 社区查询 局部社区发现 Skip-gram模型 节点相似度 community search local community detection Skip-gram similarity of nodes
  • 相关文献

参考文献2

二级参考文献57

  • 1B W Kemighan, S Lin. An efficient heuristic procedure for par- titioning graphs I J]. The Bell system technical journal, 1970,49 (1) :291 - 307. 被引量:1
  • 2M Belkin, P Niyogi. Laplacian eigenmaps and stxtral tech- niques for embedding and clustering I A]. Advances in Neural Information Prcr_essing Systems I C ]. Vancouver, Canada: M IT Press,2001,14:585 - 591. 被引量:1
  • 3S White, P Smyth. A spectral clustering approach to finding communities in graphs [ A. Kamath C,Gotximan A,eds.Pm- ceedings of the 5th SIAM International Conference on Data Mining [ C]. Philadelphia: SIAM, 2005.76 - 84. 被引量:1
  • 4F Wu, B A Huberman. lmding communities in linear time: a physics approach I J ]. The European Physical Journal B-Con- densed Matter and Complex Systems, 2004,38 (2) : 331 - 338. 被引量:1
  • 5H Zhou. Distance, Dissimilarity index, and network community structure [ J] .Physical Review E,2003,67(6) :061901. 被引量:1
  • 6P Ports, M Latapy. Computing communities in large networks using random walks I A]. Proceedings of Computer and Infor- marion Sciences,-ISCIS 2005 [ C ]. Berlin, Heidelberg: SpringerVerlag, 2005,3733 ( 31 ) : 284 - 293. 被引量:1
  • 7M Girvan, M E J Newman. Community slructttre in social and biological networks [ J]. Proceedings of National Academy of Science of the United States of America, 2002, 99:7821 - 7826. 被引量:1
  • 8M E J Newman,M Girvan. Finding and evaluating community structure in networks [ J ]. Physical Review E, 2004, 69: 026113. 被引量:1
  • 9M E J Newman. Fast algorithm for detecting community struc- ture in networks [ J] .Physical Review E,2004,69:066133. 被引量:1
  • 10F Radicchi, C Castellano, F Cecconi, V Loreto, D Parisi. Defining and identifying communities in networks [ J ]. Pro- ceedings of the National Academy of Sciences of the United States of America, 2004,101(9) :2658 - 2663. 被引量:1

共引文献39

同被引文献6

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部