期刊文献+

自适应参数的轨迹压缩算法 被引量:4

Trajectory compression algorithm with adaptive parameter
下载PDF
导出
摘要 针对现有轨迹数据压缩算法难以确定压缩阈值的缺点,提出了自适应参数的轨迹压缩算法。该算法根据用户期望达到的压缩效果,按照优先保证压缩比的策略,在保证压缩效率和压缩效果的情况下,帮助用户自动确定压缩阈值,从而避免了用户需要根据自己的经验,进行反复实验来得到理想压缩阈值的过程。实验结果表明,自适应参数与非迭代的压缩算法相结合,在保证原压缩算法压缩效率的情况下,解决了压缩阈值难以确定的问题,同时还提高了原压缩算法的压缩效果;自适应参数与迭代的压缩算法相结合,会降低原压缩算法的压缩效率,但解决了压缩阈值难以确定的问题,同时还提高了原压缩算法的压缩效果。 In order to overcome the disadvantage that it was hard to confirm the perfect compression threshold while the algorithm running,this paper presented trajectory compression algorithms with adaptive parameters.This method,based on the compression effort that users expected and the strategy ensuring the compression ratio priority,could help users to automatically determine the compression threshold while guaranteeing the compression efficiency and effect.It would avoid users found the perfect compression threshold by their experience and repeated experiments.The experimental results show:adaptive parameters combined with the non-iterative compression algorithms guarantee the compression efficiency of original compression algorithms and solve the problem that it is hard to confirm the perfect compression threshold,at the same time also improve the compression effect of the original compression algorithms;adaptive parameters combined with the iterative compression algorithms reduce the compression efficiency of original compression algorithms,but solve the problem that it is hard to confirm the perfect compression threshold,at the same time also improve the compression effect of the original compression algorithms.
作者 龙浩 张书奎 孙鹏辉 Long Hao;Zhang Shukui;Sun Penghui(School of Information&Electrical Engineering,Xuzhou College of Industrial Technology,Xuzhou Jiangsu 221002,China;School of Computer Science&Technology,Soochow University,Suzhou Jiangsu 215006,China;Jiangsu Province Support Software Engineering R&D Center for Modern Information Technology Application in Enterprise,Suzhou Jiangsu 215104,China;School of Computer Science&Technology,China University of Mining&Technology,Xuzhou Jiangsu 221002,China)
出处 《计算机应用研究》 CSCD 北大核心 2018年第3期685-688,716,共5页 Application Research of Computers
基金 国家自然科学基金资助项目(61201212) 江苏省自然科学基金资助项目(BK2011376) 江苏省"六大人才高峰"项目(2014-WLW-010) 苏州市融合通信重点实验室(SKLCC2013XX) 江苏省产学研前瞻性项目(BY2012114) 徐州市科技局应用基础研究计划资助项目
关键词 轨迹压缩 自适应参数 压缩阈值 压缩比 rajectory compression adaptive parameter compression threshold compression ratio
  • 相关文献

参考文献5

二级参考文献85

  • 1张达夫,张昕明.基于时空特性的GPS轨迹数据压缩算法[J].交通信息与安全,2013,31(3):6-9. 被引量:15
  • 2Meratnia N,de By R A. Spatio-temporal compression techniques for moving point objects[J].Computer Science,2004.765-782. 被引量:1
  • 3Foley J D,van Dam A,Feiner S K. Computer graphics:principles and practice[M].Tokyo:Ltd.Ohmsha,2001. 被引量:1
  • 4Muckell J,Hwang J H,Lawson C T. Algorithms for compressing GPS trajectory data:an empirical evaluation[A].ACM,New York:ACM,2010.402-405. 被引量:1
  • 5Keogh E J,Chu S,Hart D. An online algorithm for segmenting time series[A].San Jose,CA:IEEE,2001.289-296. 被引量:1
  • 6Potamias M,Patroumpas K,Sellis T. Sampling trajectory streams with spatiotemporal criteria[A].Washington:IEEE,2006.275-284. 被引量:1
  • 7PAN G, QI G, WU Z, et al. Land-use classification using taxi GPS traces[ J]. IEEE Transactions on Intelligent Transportation System, 2013, 14(3) : 112 - 123. 被引量:1
  • 8YAN Z. Towards semantic trajectory data analysis: a conceptual and computational approach[ C]// Proceedings of the VLI)B 2009 Phi) Workshop Co-Located with the 35th International Conference on Ver- y Large Data Bases. New York: ACM, 2009:81 -83. 被引量:1
  • 9HUNG C, PENG W. Model driven traffic data acquisition in vehicle sensor networks[ C]// Proceedings of the 40th IEEE International Conference on Parallel Processing. Piscataway: IEEE, 2011 : 424 - 432. 被引量:1
  • 10LONG C, WONG R. Direction-preserving trajectory simplification [C]// VLDB 2013: International Conference on Very Large Data Bases. New York: ACM, 2013:949-960. 被引量:1

共引文献38

同被引文献29

引证文献4

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部