期刊文献+

微环差分光子生物传感器的传感性能 被引量:2

Sensing performance of micro-ring differential optical biosensor
下载PDF
导出
摘要 通过模拟仿真,研究了基于绝缘衬底上的硅(Silicon-On-Insulator,SOI)的微环生物传感器的传感性能,得出其体传感灵敏度为38.71 nm/RIU,探测极限为1.8×10-3 RIU,Q值为2.22×104。基于该结构,分析了噪声对传感器性能的影响,包括光源噪声和温度噪声。为了降低噪声影响,设计了具有参考和探测通道的双微环差分传感器,通过差分运算扣除噪声引起的谐振波长漂移,从而可以有效降低噪声对传感器探测结果的影响。通过数值模拟和计算,其被探测物的折射率变化的相对误差减小了15.85%,表明微环差分传感器可以有效降低噪声的影响,对提高微环生物传感器的性能将有极大的促进作用。 The sensing performance of micro-ring biosensor on Silicon-On-Insulator(SOI)was studied through simulation.The sensitivity of 38.71 nm/RIU,detection limit of 1.8×10-3 RIU and Q factor of 2.22×104 were achieved.The effects of noise on the sensor,including the light source noise and temperature noise,were then investigated.A dual micro-ring differential sensor with reference and probe channels was proposed,and the wavelength drift induced by the noises can be deducted to reduce the influence of noise by this differential operation.The relative error of the refractive index change was reduced by 15.85%through the calculation and numerical simulation,so the micro-ring differential biosensor can effectively reduce the influence of noise to enhance the sensing performance of the micro-ring biosensor.
作者 管磊 王卓然 袁国慧 陈昱任 董礼 彭真明 Guan Lei;Wang Zhuoran;Yuan Guohui;Chen Yuren;Dong Li;Peng Zhenming(School of Optoelectronic Information,University of Electronic Science and Technology of China,Chengdu 610054,China)
出处 《红外与激光工程》 EI CSCD 北大核心 2018年第2期190-195,共6页 Infrared and Laser Engineering
基金 国家自然科学基金(61575038 61571096) 中央高校基本科研业务费专项资金(ZYGX2015J052)
关键词 集成光学 光子传感 微环生物传感器 回音壁模式 差分降噪 integrated optics optical sensing micro-ring biosensor whispering gallery mode differential noise reduction
  • 相关文献

参考文献7

二级参考文献46

  • 1王岩,张玲,邢朝洋.硅微谐振加速度计高精度相位闭环控制系统设计与实现[J].中国惯性技术学报,2014,12(5):688-692. 被引量:7
  • 2Yilmaz Y Q, Demir A, Kurt A, et al. Optical Channel Dropping with a Silicon Microsphere [J]. IEEE Photon Teehnol Left, 2005, 17: 1662-1664. 被引量:1
  • 3Carmon T, Vahala K J. Visible continuous emission from a silica microphotonic device by third-harmonic generation [J]. Nature, 2007, 3(1): 430-435. 被引量:1
  • 4Yilmaz Y O, Demir A, Kurt A, et al. Optical channel dropping with a silicon microsphere [J]. IEEE Photon Teehnol Lett, 2005, 17: 1662-1664. 被引量:1
  • 5Krioukov E, Klunder D J W, Driessen A, et al. Sensor based on an integrated optical microcavity [J]. Opt Left, 2002, 27: 512-514. 被引量:1
  • 6Armani A M, Vahala K J. Heavy water detection using ultra- high-Q microcavities[J]. Opt Left, 2006, 31: 1896-1898. 被引量:1
  • 7Armani A M, Kulkami R P, Fraser S E, et al. Label-free, single-molecule detection with optical microcavities [J]. Science, 2008, 317: 783-787. 被引量:1
  • 8Spillane S M, Kippenberg T J, Vahala K J. Ultralow-threshold raman laser using a spherical dielectric microcavity [J]. Nature, 2002, 415(1): 621-623. 被引量:1
  • 9Ilchenko V S, Savchenkov A A, Byrd J, et al. Crystal quartz optical whispering-gallery resonators [J]. Opt Lett, 2008, 33: 1569-71. 被引量:1
  • 10Grudinin I S, Yu N, Maleki L. Generation of optical frequency combs with a CaF2 resonator [J]. Opt Left, 2009, 34: 878-80. 被引量:1

共引文献53

同被引文献12

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部