期刊文献+

基于改进黑洞算法优化ESN的网络流量短期预测 被引量:12

Network Traffic Short-Term Prediction Based on Echo State Network Optimized by Improved Black Hole Algorithm
下载PDF
导出
摘要 网络流量数据序列具有混沌特性.相空间重构后,采用一种改进黑洞算法优化回声状态网络的非线性模型对网络流量进行预测.改进黑洞算法是在现有工作的基础上提出一种新的新解生成机制,可以提高算法的收敛速度和精度;相比于遗传算法、和声搜索算法等其他优化算法,所提出的改进黑洞算法不依赖自身相关参数的准确设定;将其应用于回声状态网络4个重要参数的优化选取,使得预测模型具有较好的预测稳定性.通过Mackey-Glass混沌时间序列和网络流量公共数据集的仿真实验,结果表明所提出的方法具有较好的预测性能. The network traffic data series has chaos characteristics.After phase space reconstruction,a nonlinear prediction model based on echo state network(ESN)optimized by improved black hole(BH)was used to predict network traffic.The improved BH algorithm is a new mechanism for new-solution generation based on current works,which can increase the algorithm s convergence speed and precision.Compared with other optimization algorithms,such as genetic algorithm(GA),harmony search(HS)algorithm,etc,the proposed improved BH algorithm is not affected by the accuracy of the setting for some parameters of itself.It is used to optimally select four key parameters of the ESN model,which has better prediction stability.Simulation experiments of Mackey-Glass chaos time series and public network traffic data set show that the proposed method has better prediction ability.
作者 韩莹 井元伟 金建宇 李琨 HAN Ying;JING Yuan-wei;JIN Jian-yu;LI Kun(School of Information Science&Engineering,Northeastern University,Shenyang 110819,China;College of Engineering,Bohai University,Jinzhou 121013,China;School of National Defense Education,Northeastern University,Shenyang 110819,China.Corresponding author:JING Yuan-wei,E-mail:jingyuanwei@ise.neu.edu.cn)
出处 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2018年第3期311-315,共5页 Journal of Northeastern University(Natural Science)
基金 国家自然科学基金资助项目(61773108 61403040)
关键词 网络流量 混沌时间序列 回声状态网络 黑洞算法 预测 network traffic chaos time series echo state network(ESN) black hole algorithm prediction
  • 相关文献

参考文献6

二级参考文献59

  • 1Wang J.News[J].Hepatobiliary & Pancreatic Diseases International,2012,11(1):27-27. 被引量:1
  • 2张浩然,汪晓东.回归最小二乘支持向量机的增量和在线式学习算法[J].计算机学报,2006,29(3):400-406. 被引量:112
  • 3王升辉,裘正定.结合多重分形的网络流量非线性预测[J].通信学报,2007,28(2):45-50. 被引量:40
  • 4Vapnik V N. The nature of statistical learning theory [ M ]. New York:Springer,1995:1 - 104. 被引量:1
  • 5Cristianini N, Shawe-Taylor J. An introduction to support vector machines and other kernel-based learning methods I M 1. Cambridge : Cambridge University Press,2000. 被引量:1
  • 6Suykens J A K, Vandewall J. Least squares support vector machine classifiers [ J]. Neural Processing Letters, 1999,9 (3) :293 -300. 被引量:1
  • 7He K J, Lai K K, Yen J. A hybrid slantlet denoising least squares support vector regression model for exchange rate prediction [ C ]// International Conference on Computational Science. Amsterdam,2010:2397 - 2405. 被引量:1
  • 8An S J, Liu W Q, Venkatesh S. Fast cross-validation algorithms for least squares support vector machine and kernel ridge regression[ J]. Pattern Recognition, 2007,40 ( 8 ) : 2154 -2162. 被引量:1
  • 9Chen Z, Huang A Y. Modeling and simulation of the GA- LSSVM-based soft measurement for torque [ J ]. Applied Mechanics and Materials ,2011,44/45/46/47:733 - 737. 被引量:1
  • 10Xie G J,Yan S Q,Tang Z Y,et al. A PHM system for AEW radar based on AOPS-LSSVM prognostic algorithm and expert knowledge database [C ]/Prognostics and Health Management Conference. Macao ,2010 : 1 - 6. 被引量:1

共引文献62

同被引文献114

引证文献12

二级引证文献82

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部