摘要
在大规模MIMO系统的上行检测算法中,最小均方误差MMSE检测算法能够达到近似最优的性能,但其涉及到大矩阵的求逆运算,计算复杂度非常高。为此,利用Cholesky分解和Sherman-Morrison公式,运用MMSE检查算法中所用矩阵的正定对称性,提出了Cholesky分解和Sherman-Morrison公式联合的检测算法。通过理论证明了所提出的算法在检测性能不损失的情况下将大规模MIMO系统检测算法的复杂度从O(K3)降低到O(K2),仿真结果验证了所提出的算法性能优于诺依曼级数近似算法,并能实现传统MMSE算法的性能。
In the uplink detection algorithm for massive MIMO systems,the minimum mean square error(MMSE)detection algorithm can achieve approximately optimal performance.But it involves the inverse calculation of large matrices,and has very high computational complexity.In order to solve the inverse problem of large matrix,this paper proposes a Cholesky and Sherman-Morrison(CSM)detection algorithm based on Cholesky decomposition and Sherman-Morrison formula,as well as the positive definite symmetry of matrices used in MMSE detection algorithm.The theoretical analysis shows that the proposed algorithm can reduce the computational complexity from O(K 3)to O(K 2)in the case of almost no loss of detection performance.The simulation results show that the performance of the proposed algorithm is superior to the Neumann series approximation algorithm and can realize the performance of the traditional MMSE algorithm.
作者
曹海燕
杨敬畏
方昕
冯瑞瑞
许方敏
CAO Haiyan;YANG Jingwei;FANG Xin;FENG Ruirui;XU Fangmin(School of Communication Engineering,Hangzhou Dianzi University,Hangzhou Zhejiang 310018,China)
出处
《杭州电子科技大学学报(自然科学版)》
2018年第1期30-33,共4页
Journal of Hangzhou Dianzi University:Natural Sciences
基金
国家自然科学基金资助项目(61501158)
浙江省自然科学基金资助项目(LY14F010019)