摘要
针对数据挖掘项目实施过程中常规的数据抽取方法的局限性以及数据抽取效率较低的状况,提出并设计了一种高效的数据抽取算法,算法具有控制参数通用性配置、数据包文件自动搜索与识别、数据自动分类抽取及数据自动存储等特点.测试结果表明,算法能够极大地提高数据抽取的效率.
In the implementation process of data mining project,aiming at many limitations in the conventional data extraction method and the low efficiency of data extraction,an efficient data extraction algorithm is proposed and designed,which has the characteristics of general configuration of control parameters,automatic search and recognition of package files,automatic classification and extraction of data,and automatic storage of data.Experimental results show that the algorithm can greatly improve the efficiency of data extraction.
作者
张志强
王伟钧
郑加林
杨晋浩
ZHANG Zhiqiang;WANG Weijun;ZHENG Jialin;YANG Jinhao
出处
《成都大学学报(自然科学版)》
2018年第1期45-48,共4页
Journal of Chengdu University(Natural Science Edition)
基金
成都市科技局自然科学基金(2015-RK00-00201-ZF)资助项目
关键词
混沌状态
数据包
通用性配置
自动搜索
分类抽取
自动存储
chaotic state
data package
generality configuration
automatic search
classification extraction
automatic storage