期刊文献+

基于多层PCA特征融合的人脸遮挡检测 被引量:2

Face Occlusion Detection Based on Multi-layer PCA Feature Fusion
下载PDF
导出
摘要 本文提出了一种基于多层PCA特征融合的深度学习模型来提取人脸遮挡特征﹒在传统主成分分析网络的基础上保留了输入图像的浅层结构特征,并对数据样本进行核(kernel)变换来提高模型的非线性拟合能力,然后通过融合各层的特征信息来丰富最终的遮挡特征表达,后期用随机森林算法进行分类器的训练﹒实验表明:在相同训练集和测试集下,本文提出的方法在网络训练效率和遮挡检测率上均要优于PCANet等人脸遮挡检测算法﹒ In this paper a deep learning model based on multi-layer PCA feature fusion is proposed to extract face occlusion features.Based on the analysis of the network on the retention of shallow structural features of the input image in the traditional principal component,and the nuclear data sample(kernel)transformation to improve the ability of nonlinear fitting model,and then by means of the fusion feature information of each layer to enrich the final block feature expression,the late random forest classifier training algorithm.Experiments show that under the same training set and test set,the proposed method is superior to PCANet and other face occlusion detection algorithms in terms of network training efficiency and occlusion detection rate.
作者 刘浩博 石跃祥 LIU Haobo;SHI Yuexiang(College of Information Engineering,Xiangtan University,Xiangtan,Hunan 411105,China)
出处 《湖南城市学院学报(自然科学版)》 CAS 2018年第1期43-47,共5页 Journal of Hunan City University:Natural Science
关键词 深度学习 遮挡检测 核变换 特征融合 随机森林 deep learning occlusion detection kernel transformation feature fusion random forest
  • 相关文献

参考文献3

二级参考文献24

  • 1焦李成,谭山.图像的多尺度几何分析:回顾和展望[J].电子学报,2003,31(z1):1975-1981. 被引量:227
  • 2焦李成,孙强.多尺度变换域图像的感知与识别:进展和展望[J].计算机学报,2006,29(2):177-193. 被引量:45
  • 3周扬,王健.视皮层分区及其fMRI研究进展[J].现代生物医学进展,2006,6(9):79-81. 被引量:9
  • 4TURK M, PENTLAND A. Face recognitison using eigen- faces [ C] //IEEE Conference on Computer Vision and Pattern Recognition, 1991: 586- 590. 被引量:1
  • 5FISHER R. The use of multiple measurements in taxo- nomic problems [J]. Annals of Eugenics, 1936, 7(2): 179 - 188. 被引量:1
  • 6LEE H, GROSSE R. Convolutional deep belief networks for scalable unsupervised learning of hierarchical represen- tations [ C ] //// International Conference on Machine Learning, 2009:609 - 616. 被引量:1
  • 7CHRISTIAN S, TOSHEV A, ERHAN D. Deep neural networks for object detection [ C ]/z/z Advances in Neural Information Processing Systems, 2013, 2553- 2561. 被引量:1
  • 8CHRISTIAN S, LIU W, JIA Y Q. Going deeper with con- volutions [ C ]////IEEE Conference on Computer Vision and Pattern Recognition, 2015 : 1 -9. 被引量:1
  • 9CHAN T H, JIA K, GAO S H, et al. Pcanet: A simple deep learning baseline for image classification [ J ]. TIP, 2015, 24(12) :5017 - 5032. 被引量:1
  • 10BRUNA J, MALLAT S. Invariant scattering convolution net-works [J]. TPAMI, 2013, 35(8):1872-1886. 被引量:1

共引文献83

同被引文献22

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部