期刊文献+

基于RBF神经网络的汽封动力特性系数计算模型 被引量:2

The Model of the Dynamic Characteristics of Steam Seal Based on RBF Neural Network
下载PDF
导出
摘要 汽封是汽轮机里控制漏汽量的重要部件,汽封中的汽流力也是引起汽流激振的主要因素之一。传统的汽封动力特性系数计算主要为有限元法和有限差分法等。然而这些方法始终存在计算精度和网格划分、计算复杂程度的矛盾。提出基于径向基函数神经网络(RBFNN)的汽封动力特性系数计算模型,并以某厂660MW超超临界机组高压轴封为研究对象,建立该轴封动力特性系数的RBFNN计算模型。计算结果表明,该模型可大大提高计算效率,计算精度较高,满足工程计算的要求,为电厂快速、实时分析汽封中的汽流力对轴系的稳定性影响提供了方便。 Steam seal is an important part of steam turbine to control the leakage of steam.The flow force in steam seal is one of the main factors that cause steam flow excitation.The caculation of dynamic characteristics of the steam seal mainly relies on finite element method and finite difference method which always have the contradiction between the computational accuracy and the complexity.In this paper,the model based on the radial basis function neural network(RBFNN)of the dynamic characteristics of the steam seal is presented.The high pressure seal of a660MW unit of a factory is taken as the research object and the calculation results show that the model has high accuracy and can greatly improve the computational efficiency.It provides convenience for real-time analysis and calculation of characteristics of steam seal and rotor stability in power plants.
作者 邓敏强 傅行军 DENG Min-qiang;FU Xing-jun(National Engineering Research Center of Turbo-generator Vibration, Southeast University, Nanjing 210096,China)
出处 《汽轮机技术》 北大核心 2018年第1期59-62,65,共5页 Turbine Technology
关键词 汽封 径向基函数 动力特性系数 电厂实时分析 汽流激振 sealing radial basis function dynamic characteristics real time analysis of power plant excited vibration
  • 相关文献

参考文献5

二级参考文献54

  • 1常青,杨捷,裴洪卿.基于RBF神经网络的丙烯腈收率软测量方法[J].东南大学学报(自然科学版),2006,36(S1):194-196. 被引量:1
  • 2占勇,程浩忠,葛乃成,黄广兵.基于广义生长-剪枝径向基函数神经网络的谐波源建模[J].中国电机工程学报,2005,25(16):42-46. 被引量:24
  • 3林金星,沈炯,李益国.基于免疫原理的径向基函数网络在线学习算法及其在热工过程大范围工况建模中的应用[J].中国电机工程学报,2006,26(9):14-19. 被引量:15
  • 4Li Jichun, Cheng A H D, Chen C S. A comparison of efficiency and error convergence of multiquadric coHo-cation method and finite element methods[J]. Engineering Analysis with Boundary Elements,2003, 27(3): 251-257. 被引量:1
  • 5Maiduy N, Trancong T. Approximation of function and its derivatives using radial basis function networks[J]. Applied Mathe- matical Modelling, 2003, 27(3): 197-220. 被引量:1
  • 6Maiduy N, Trancong T. Numerical solution of differential equation using multiquadric radial basis function networks[J]. Neural Networks,2001, 14(2): 185-199. 被引量:1
  • 7Larsson E, Fornberg B. A numerical study of some radial basis function based solution methods for elliptic PDEs[J]. Computers and Mathematics with Aopplications, 2003, 46(5-6): 891-902. 被引量:1
  • 8Shu C, Ding H, Yeo K S. Local radial basis function based differential quadrature method and its application to solve two-dimensional incompressible Navier- Stokes equations[J]. Computer Methods in Applied. Mechanics and Engineering, 2003, 192(7-8): 941-954. 被引量:1
  • 9Zerroukat M, Power H, Chen C S. A numerical method for heat transfer problems using collocation and radial basis functions[J]. International Journal for Numerical Methods in Engineering, 1998, 42(7):1263-1278. 被引量:1
  • 10ENGELBRECHTAP.计算智能导论[M].谭营,译.2版.北京:清华大学出版社,2010:3-313. 被引量:2

共引文献28

同被引文献26

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部