期刊文献+

一种新颖高效的红外动态场景多目标检测跟踪算法 被引量:5

A Novel Algorithm for Efficient Multi-object Detection and Tracking for Infrared Dynamic Frames
下载PDF
导出
摘要 为了实现在复杂背景条件下对动态视频红外多目标进行稳健的检测与跟踪,提出了一种新颖鲁棒的运动多目标的检测与跟踪算法。首先对相邻红外图像进行匹配校准,利用图像累积差异图检测出运动的目标。为了达到实时高效的检测效果,提出了网格采样策略,大大降低了特征点的匹配复杂度并解决了特征点非均匀集中的问题。同时采用强度滤波和形态学操作等算法提升了目标的显著性特性,滤除了虚假目标;由于红外热像仪视场的变化,目标的尺度将发生变化,在检测到目标的基础上提出了尺度计算与区域检测算法;最后采取了传统的卡尔曼滤波对检测到的目标进行跟踪。实验结果表明,本文算法能够准确地检测动态场景下运动目标,并在目标尺度变化时自适应的检测出目标的变化,同时稳定地跟踪目标。 In order to achieve robust multi-object detection and tracking in dynamic infrared video under complex background conditions,a novel and efficient detection-and-tracking algorithm for moving targets is proposed in this paper.The algorithm firstly matches the adjacent infrared frames,and the image cumulative difference map is adopted to detect the moving target.In order to achieve real-time and efficient detection,a grid-sampling strategy is proposed,which greatly reduces the matching complexity of feature points and solves the problem of non-uniformity for feature points.At the same time,the intensity filtering and morphological operation are used to enhance the saliency of the object and also filter out the false object.Since the field of view of the infrared imager constantly changes,the object scale will also change.Therefore,a scale-and-region detection algorithm is proposed for solving the scale change.Finally,the traditional Kalman filter is adopted to track the detected objects.The experimental results show that the algorithm proposed in this paper can accurately detect multiple moving objects in a dynamic scene,and adaptively detect the change of target when the object scale changes,to realize robust object-tracking.
作者 田广强 TIAN Guangqiang(College of Mechanical and Electronic Engineering,Huanghe Jiaotong University,Jiaozuo 454950,China)
出处 《红外技术》 CSCD 北大核心 2018年第3期259-263,共5页 Infrared Technology
基金 河南省科技攻关重点计划项目(122102210563 132102210215) 河南省高等学校重点科研项目计划(15B520008)
关键词 动态视频 目标跟踪 累积差异图 特征检测 显著性增强 尺度变化 卡尔曼滤波 dynamic scene object tracking cumulative error image feature detection saliency scale vaviation Kalman filter
  • 相关文献

参考文献5

二级参考文献34

  • 1李秋华,李吉成,沈振康.采用D-S证据理论的双色红外小目标融合检测[J].红外与激光工程,2005,34(3):266-271. 被引量:9
  • 2吕雁,史林,苏新主.基于小波和高阶累积量的红外弱小目标检测[J].红外技术,2006,28(12):713-716. 被引量:12
  • 3范九伦,赵凤,张雪峰.三维Otsu阈值分割方法的递推算法[J].电子学报,2007,35(7):1398-1402. 被引量:67
  • 4Kittler J, Illingworth J. Minimum error thresholding. Pat- tern Recognition, 1986, 19(1): 41-47. 被引量:1
  • 5Otsu N. A threshold selection method from gray-level his- tograms. IEEE Transactions on Systems, Man, and Cyber- netics, 1979, 9(1): 62-66. 被引量:1
  • 6Kapur J N, Sahoo P K, Wong A K C. A new method for gray-level picture thresholding using the entropy of the his- togram. Computer Vision, Graphics, and Image Processing, 1985, 29(3): 273-285. 被引量:1
  • 7Sezgin M, Sankur B. Survey over image thresholding tech- niques and quantitative performance evaluation. Journal of Electronic Imaging, 2004, 13(1): 146-168. 被引量:1
  • 8Fan J L, Xie W X. Minimum error thresholding: a note. Pattern Recognition Letters, 1997, 18(8): 705-709. 被引量:1
  • 9Krinidis S, Chatzis V. A robust fuzzy local information C- means clustering algorithm. IEEE Transactions on Image Processing, 2010, 19(5): 1328-1337. 被引量:1
  • 10Ma L, Staunton R C. A modified fuzzy C-means image seg- mentation algorithm for use with uneven illumination pat- terns. Pattern Recognition, 2007, 40(11): 3005-3011. 被引量:1

共引文献134

同被引文献21

引证文献5

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部