期刊文献+

由六个顶点的箭图诱导的项链李子代数

Necklace Lie subalgebras induced by six vertex arrow
下载PDF
导出
摘要 无限维项链李代数是新的一类无限维李代数,本文重点讨论了由六个顶点的箭图诱导的项链李子代数,研究了这类李子代数的子代数,同构和同态,这类李代数是Virasoro-like李代数的推广,并讨论了它的其他一些性质. In this paper,a new infinite dimensional Necklace lie algebra is studied.Lie subalgebras induced by six vertex arrow are mainly discussed.The infinite dimensional lie algebra is popularized of Virasoro-like lie algebra.Subalgebra,isomorphisms and homomorphism of the infinite dimensional lie algebra are studied and the other properties of these Lie algebras are studied.
作者 余德民 梅超群 Yu Demin;Mei Chaoqun(College of Mathematics, Hunnan Institute of Science and Technology, Yueyang 414006, China;School of Statistics, Capital University of Economic and Business, Beijing 100070, China)
出处 《纯粹数学与应用数学》 2018年第1期7-14,共8页 Pure and Applied Mathematics
基金 国家自然科学基金(11771135) 湖南省社科基金教育学课题(XSJ17B16) 湖南省省级教研教改项目(湘教通2016(400))
关键词 项链李代数 理想 子代数 Necklace lie algebra ideal subalgebra
  • 相关文献

参考文献1

二级参考文献7

  • 1余德民,卢才辉.李代数L(Z,f,δ)的特殊性质[J].数学进展,2006,35(6):707-711. 被引量:24
  • 2Raf bocklant and Lieven Le Bruyn. Necklace lie algebras and nocommunicative symplectic geometry[J]. Mathematische Zeitschrift, 2002, 240: 141-167. 被引量:1
  • 3Victor Ginzburg, Non-commutative Symplectic Geometry, uiver varieties, and Opera(is[J]. Mathematical Research Letters, 2001, 8(3): 377-400. 被引量:1
  • 4Anne P, Geert V d W. Double Poisson cohomoogy of path algebras of quivers[J]. Journal of Algebra, 2008, 319: 2166-2208. 被引量:1
  • 5Marshall, Osborn J, Zhao K M. Infinite dimensinal Lie algebra of type L[J]. Comm Algebra, 2003, 31(5): 2445-2469. 被引量:1
  • 6Banks S P, McCaffrey D. Lie Algebras, structure of nonlinear systems and chaotic motition[J]. International Journal of Bifurcation and Chaos, 1998, 8(7)! 1437-1462. 被引量:1
  • 7Auslander M, Reiten I and Smal O S. Representation theory of artin algebras[J]. Cambridge Stud Adv Math, Cambridge University Press, Cambridge, 1995. 被引量:1

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部