摘要
采用引入变量的多元复合函数微商法则,将直角坐标系下的1阶偏微分形式变换成球极坐标形式,进而推导出球极坐标系下角动量平方算符与拉普拉斯算符的表达式.这将使得在量子力学中求解Schr9dinger方程、各角动量算符对应的各角量子数变得更加简单.
Several universal formulas of first-order partial differential forms in rectangular coordinate system are correspondingly transformed into forms of spherical polar coordinate by using derivative principle of multiple function leading variable.Subsequently,the formulas of the angular momentum square operator and Laplace operator in spherical polar coordinate are further deduced on the basis of the obtained forms.It is to be easier for the solution of Schr dinger equation and the correspondent different quantum number of the different angular momentum operator in quantum mechanics.
作者
温祖标
熊谢微
代芳
曹贻利
李永红
朱佳
章磊
WEN Zubiao;XIONG Xiewei;DAI Fang;CAO Yili;LI Yonghong;ZHU Jia;ZHANG Lei(College of Chemistry and Chemical Engineer,Jiangxi Normal University,Nanchang Jiangxi 330022,China;Jiangxi Province Key Laboratory of Precision Drive and Control,Nanchang Institute of Technology,Nanchang Jiangxi 330099,China)
出处
《江西师范大学学报(自然科学版)》
CAS
北大核心
2017年第6期633-636,共4页
Journal of Jiangxi Normal University(Natural Science Edition)
基金
国家自然科学基金(21463013)
江西省自然科学基金(20171BAB203013)
江西省教育厅科学技术研究课题(GJJ160290)
江西省高等学校教学改革研究课题资助项目
关键词
角动量平方算符
拉普拉斯算符
球极坐标系
多元复合函数微商法则
量子力学
angular momentum square operator
Laplace operator
spherical polar coordinate
derivative principle of multiple function
quantum mechanics