摘要
Due to global warming, glaciers on the Tibetan Plateau(TP) are experiencing widespread shrinkage; however, the mechanisms controlling glacier variations across the TP are still rather unclear, especially on the northeastern TP. In this study, a physically based, distributed surface-energy and mass-balance model was used to simulate glacier mass balance forced by meteorological data. The model was applied to Laohugou No. 12 Glacier, western Qilian Mountains, China, during2010~2012. The simulated albedo and mass balance were validated and calibrated by in situ measurements. The simulated annual glacier-wide mass balances were-385 mm water equivalent(w.e.) in 2010/2011 and-232 mm w.e. in 2011/2012,respectively. The mean equilibrium-line altitude(ELA) was 5,015 m a.s.l., during 2010~2012, which ascended by 215 m compared to that in the 1970 s. The mean accumulation area ratio(AAR) was 39% during the two years. Climatic-sensitivity experiments indicated that the change of glacier mass balance resulting from a 1.5 °C increase in air temperature could be offset by a 30% increase in annual precipitation. The glacier mass balance varied linearly with precipitation, at a rate of130 mm w.e. per 10% change in total precipitation.
Due to global warming, glaciers on the Tibetan Plateau(TP) are experiencing widespread shrinkage; however, the mechanisms controlling glacier variations across the TP are still rather unclear, especially on the northeastern TP. In this study, a physically based, distributed surface-energy and mass-balance model was used to simulate glacier mass balance forced by meteorological data. The model was applied to Laohugou No. 12 Glacier, western Qilian Mountains, China, during2010~2012. The simulated albedo and mass balance were validated and calibrated by in situ measurements. The simulated annual glacier-wide mass balances were-385 mm water equivalent(w.e.) in 2010/2011 and-232 mm w.e. in 2011/2012,respectively. The mean equilibrium-line altitude(ELA) was 5,015 m a.s.l., during 2010~2012, which ascended by 215 m compared to that in the 1970 s. The mean accumulation area ratio(AAR) was 39% during the two years. Climatic-sensitivity experiments indicated that the change of glacier mass balance resulting from a 1.5 °C increase in air temperature could be offset by a 30% increase in annual precipitation. The glacier mass balance varied linearly with precipitation, at a rate of130 mm w.e. per 10% change in total precipitation.
基金
supported by the Chinese Academy of Sciences(KJZD-EW-G03-04)
the National Natural Science Foundation of China(41721091,41671071)
Open Foundation of State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering(No.2017490711)