期刊文献+

Geomechanical effects of stress shadow created by large-scale destress blasting 被引量:3

Geomechanical effects of stress shadow created by large-scale destress blasting
下载PDF
导出
摘要 This study aims to determine if large-scale choked panel destress blasting can provide sufficient beneficial stress reduction in highly-stressed remnant ore pillar that is planned for production. The orebody is divided into 20 stopes over 2 levels, and 2 panels are choke-blasted in the hanging wall to shield the ore pillar by creating a stress shadow around it. A linear-elastic model of the mining system is constructed with finite difference code FLAC3 D. The effect of destress blasting in the panels is simulated by applying a fragmentation factor(α) to the rock mass stiffness and a stress reduction factor(β) to the current state of stress in the region occupied by the destress panels. As an extreme case, the destress panel is also modeled as a void to obtain the maximum possible beneficial effects of destressing and stress shadow.Four stopes are mined in the stress shadow of the panels in 6 lifts and then backfilled. The effect of destress blasting on the remnant ore pillar is quantified based on stress change and brittle shear ratio(BSR) in the stress shadow zone compared to the base case without destress blasting. To establish realistic rock fragmentation and stress reduction factors, model results are compared to measured stress changes reported for case studies at Fraser and Brunswick mines. A 1.5 MPa immediate stress decrease was observed 20 m away from the panel at Fraser Mine, and a 4 MPa immediate stress decrease was observed 25 m away at Brunswick Mine. Comparable results are obtained from the current model with a rock fragmentation factor α of 0.2 and a stress reduction factor α of 0.8. It is shown that a destress blasting with these parameters reduces the major principal stress in the nearest stopes by 10-25 MPa.This yields an immediate reduction of BSR, which is deemed sufficient to reduce volume of ore at risk in the pillar. This study aims to determine if large-scale choked panel destress blasting can provide sufficient beneficial stress reduction in highly-stressed remnant ore pillar that is planned for production. The orebody is divided into 20 stopes over 2 levels, and 2 panels are choke-blasted in the hanging wall to shield the ore pillar by creating a stress shadow around it. A linear-elastic model of the mining system is constructed with finite difference code FLAC3 D. The effect of destress blasting in the panels is simulated by applying a fragmentation factor(α) to the rock mass stiffness and a stress reduction factor(β) to the current state of stress in the region occupied by the destress panels. As an extreme case, the destress panel is also modeled as a void to obtain the maximum possible beneficial effects of destressing and stress shadow.Four stopes are mined in the stress shadow of the panels in 6 lifts and then backfilled. The effect of destress blasting on the remnant ore pillar is quantified based on stress change and brittle shear ratio(BSR) in the stress shadow zone compared to the base case without destress blasting. To establish realistic rock fragmentation and stress reduction factors, model results are compared to measured stress changes reported for case studies at Fraser and Brunswick mines. A 1.5 MPa immediate stress decrease was observed 20 m away from the panel at Fraser Mine, and a 4 MPa immediate stress decrease was observed 25 m away at Brunswick Mine. Comparable results are obtained from the current model with a rock fragmentation factor α of 0.2 and a stress reduction factor α of 0.8. It is shown that a destress blasting with these parameters reduces the major principal stress in the nearest stopes by 10-25 MPa.This yields an immediate reduction of BSR, which is deemed sufficient to reduce volume of ore at risk in the pillar.
出处 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2017年第6期1085-1093,共9页 岩石力学与岩土工程学报(英文版)
基金 financially supported by a joint grant from MITACS Canada and Vale Canada Ltd
关键词 Destress blasting PRECONDITIONING Rockbursts Strainbursts Numerical modeling Rock failure Destress blasting Preconditioning Rockbursts Strainbursts Numerical modeling Rock failure
  • 相关文献

同被引文献30

引证文献3

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部