期刊文献+

气流作用下同轴带电射流的不稳定性研究 被引量:9

INSTABILITY STUDY OF AN ELECTRIFIED COAXIAL JET IN A COFLOWING GAS STREAM
下载PDF
导出
摘要 通过对气体驱动同轴电流动聚焦的实验模型进行简化,开展了电场力和惯性力共同作用下同轴带电射流的不稳定性理论研究.在流动为无黏、不可压缩、无旋的假设下,建立了三层流体带电射流物理模型并得到了扰动在时间域内发展演化的解析形式色散关系,利用正则模方法求解色散方程发现了流动的不稳定模态,进而分析了主要控制参数对不稳定模态的影响.结果表明,在参考状态下轴对称模态的最不稳定增长率最大,因此轴对称扰动控制整个流场.外层气流速度越高,气体惯性力越大,射流的界面越容易失稳.内外层液-液同轴射流之间的速度差越大,射流越不稳定.表面张力对射流不稳定性起到促进作用.轴向电场对射流不稳定性具有双重影响:当加载电场强度较小时,射流不稳定性被抑制;当施加电压大于某一临界值时,轴向电场会促进射流失稳.临界电压的大小与界面上自由电荷密度和射流表面扰动发展关系密切.这些结果与已有的实验现象吻合,能够对实验的过程控制提供理论指导. Instability study of electrified coaxial jet coupling the electric and inertial forces is performed based on thesimplified experimental model of gas-driven coaxial electro-flow focusing.Under the assumption that the fluids areinviscid,incompressible and irrotational,a triple-layer electrified fluid jet model is established and an analytical dispersionrelation in the temporal regime is obtained.The dispersion equation is solved by the normal mode method,the unstablemodes of the flow are calculated and the effects of mainly controllable parameters on the unstable modes are analyzed.Theresults indicate that the axisymmetric mode dominates the complete flow as the maximum growth rate of the axisymmetricmode is the largest among all unstable modes.As the velocity of outer gas stream increases,the inertial force can definitelypromote the jet instability.The jet will become more unstable as the velocity difference between the inner and outer liquidjets increases.The surface tension also promotes the jet instability.The axial electric field has two-fold influence on theaxisymmetric jet instabilities.There is a critical value for the axial electric voltage which is related to the free electriccharge density at the interface and the perturbation propagations on the jet surfaces.The applied axial electric field cansuppress the jet instability when its intensity is smaller than the critical value;otherwise,the applied axial electric field can promote jet instability.These results are in good agreement with the existing experimental results and can provideguidance on the process control of experiments.
作者 李帅兵 杨睿 罗喜胜 司廷 Li Shuaibing;Yang Rui;Luo Xisheng;Si Ting(Department of Modern Mechanics,University of Science and Technology of China,Hefei 230027,China)
出处 《力学学报》 EI CSCD 北大核心 2017年第5期997-1007,共11页 Chinese Journal of Theoretical and Applied Mechanics
基金 国家自然科学基金(11472270 81327803 11621202) 中央高校基本科研业务费专项资金资助项目
关键词 同轴射流 带电射流 电流动聚焦 射流不稳定性 过程控制 coaxial jet electrified jet electro-flow focusing jet instability process control
  • 相关文献

参考文献3

二级参考文献32

  • 1Barrero A, Loscertales IG. Micro- and nanoparticles via capillary flows. Annu Rev Fluid Mech, 2007, 39:89-106. 被引量:1
  • 2Fernendez de la Morn J. The fluid dynamics of Taylor cones. Annu Rev Fluid Mech, 2007, 39:217-243. 被引量:1
  • 3Ganan-Calvo AM. Generation of steady liquid mi- crothreads and micron- sized monodisperse sprays in gas streams. Phys Rev Left, 1998, 80:285-288. 被引量:1
  • 4Martin-Banderas L, Flores-Mosquera M, Riesco-Chueca P, et al. Flow focusing: a versatile technology to produce size- controlled and specific morphology microparticles. Small, 2005, 7:688-692. 被引量:1
  • 5Martln-Banderas L, Rodriguez-Gil A, CebollaA, et al. Towards high-throughput production of uniformly encoded microparticles. Adv Mater, 2006, 18:559-564. 被引量:1
  • 6Ganan-Calvo AM, Lopez-Herrera JM, Riesco-Chueca P. The combination of electrospray and flow focusing. J Fluid Mech, 2006, 566:421-445. 被引量:1
  • 7Ganan-Calvo AM, Ferrera C, Montanero JM. Universal size and shape of viscous capillary jets: application to gas- focused microjets. J Fluid Mech, 2011, 670:427-438. 被引量:1
  • 8Montanero JM, Rebollo-Munoz N, Herrada MA, et al. Global stability of the focusing effect of fluid jet flows. Phys Rev E, 2011, 83:036309. 被引量:1
  • 9Si Ting, Li Fang, Yin Xieyuan, et al. Modes in flow focus- ing and instability of coaxial liquid-gas jets. J Fluid Mech, 2009, 629:1-23. 被引量:1
  • 10Si Ting, Li Fang, Yin Xieyuan, et al. Spatial instability of cofiowing liquid-gas jets in capillary flow focusing. Phys Fluids, 2011, 22:112105. 被引量:1

共引文献18

同被引文献42

引证文献9

二级引证文献36

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部