期刊文献+

两个非对称图量子MDS码的构造

Construction of two asymmetric graph quantum MDS codes
下载PDF
导出
摘要 量子纠错编码技术在量子信息理论中一直以来有着重要的地位,在量子纠错编码方案中,Schingemann和Werner两人提出了通过构造具有某些性质的图(矩阵)来构造非二元量子码的方法,他们利用这种图论方法构造出很多好的量子码,特别给出量子码[[5,1,3]]_p(p≥3)存在性的一个新证明。此方法可从对称量子码推广至非对称量子码的构造,利用推广方法证明了非对称图量子MDS码[[5,1,4/2]]p,(p>5)和[[7,1,6/2]]p(p>7)的存在性。 Quantum error correction plays a crucial role in quantum information theory.Schlingemann and Wernerpresented a new way to construct quantum stabilizer codes by finding certain graphs(or matrices)with specific properties,and they constructed several new nonbinary quantum codes by the way,in particular,they gave a new proof on existenceof quantum codes[[5,1,3]]p(p≥3).The way can be generalized the construction of symmetric quantum codes to theasymmetric case.Using this method,the existence of asymmetric graph quantum MDS codes with parameters[[5,1,4/2]]pand[[7,1,6/2]]p is showed separately for all primes p>5and p>7by graph machinery.
作者 程茜 于慧 CHENG Qian;YU Hui(Department of Mathematics, Qinghai Normal University, Xining 810008, China;Department of Mathematics & Physics, Dalian Jiaotong University, Dalian, Liaoning 116028, China)
出处 《计算机工程与应用》 CSCD 北大核心 2017年第19期61-64,共4页 Computer Engineering and Applications
关键词 非对称量子码 量子MDS码 图构造 asymmetric quantum codes quantum MDS codes graph construction
  • 相关文献

参考文献2

二级参考文献12

  • 1Wootters W K, Zurek W H. A single quantum cannot be cloned. Nature, 1982, 299:802~803. 被引量:1
  • 2Shor P W. Scheme for reducing decoherence in quantum memory. Phys Rev A, 1995, 52:2493. 被引量:1
  • 3Steane A M. Multiple particle interference and quantum error correction. Proc Roy Soc London A, 1996,452:2551~2557. 被引量:1
  • 4Calderbank A R, Rains E M, Shot P W, et al. Quantum error correction via codes over GF(4). IEEE Trans Inform Theory, 1998, 44(7): 1369~1387. 被引量:1
  • 5Ashikhim A, Knill E. Non-binary quantum stabilizer codes. IEEE Trans Inform Theory, 2001, 47(11):3065~3072. 被引量:1
  • 6Matsumoto R, Uyematsu T. Constructing quantum error-correcting codes for pm-state sysetems from classical error-correcting codes. 1999, quant-ph/9911011. 被引量:1
  • 7Rains E M. Nonbinary quantum codes. IEEE Trans Inform Theory, 1999, 45(9): 1827~1832. 被引量:1
  • 8Schlingemann D, Werner R F. Quantum error-correcting codes associated with graphs. Phys Rev A, 2001,65:no.012308.quant-ph/0012111. 被引量:1
  • 9Feng K Q, Quantum codes [[6, 2, 3]]p and [[7, 3, 3]]p(p ≥ 3) exist. IEEE Trans Inform Theory, 2002,48(8): 2384~2391. 被引量:1
  • 10Knill E, Laflamme R. A theory of quantum error-correcting codes. Phys Rev A, 1997, 55:900~911. 被引量:1

共引文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部