期刊文献+

数据中心网络拓扑感知型能耗优化算法 被引量:3

Topology-aware energy consumption optimization in data center networks
下载PDF
导出
摘要 针对数据中心网络中高能耗的问题,提出了一种拓扑感知型能耗优化算法。算法首先根据广义超立方体拓扑多维正交和单维全连接的结构特性,优化虚拟机的部署位置,进而提出多维最佳适应策略来充分利用服务器各维资源。然后利用虚拟机资源需求预测模型并结合迁移代价公式,均衡考虑服务器资源使用代价、虚拟机通信代价和迁移资源消耗,在合理迁移虚拟机以满足系统性能的前提下,降低了网络的能耗并且缓解了网络链路的拥塞。最终将网络的能耗优化问题转化成虚拟机在服务器上的优化配置问题。实验结果表明,与其他三种算法比较,算法在降低系统能耗和减少拥塞方面获得了良好的效果。 A topology-aware energy consumption optimization algorithm is designed for the high energy consumption problem in data center networks.According to the properties of multi-dimensional orthogonality and single-dimensional full mesh in the generalized hypercube,the algorithm optimizes the location of virtual machines in servers and puts forward a multi-dimensional best fit decreasing strategy to utilize multi-dimensional resources fully.With the consideration of resource balance of servers,communication cost of virtual machines and the resource consumption in migration process,the algorithm utilizes resource requirement prediction model and migration cost formula of virtual machines to satisfy the performance and energy consumption requirement of the system and relieve the congestion of links.Finally,the algorithm transforms the energy consumption optimization problem into optimized allocation of virtual machines in servers.The experimental results show that the system energy consumption and congestion are decreasing in the large scale in comparison with the other algorithms.
作者 王仁群 彭力 WANG Renqun;PENG Li(School of Internet of Things Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China)
出处 《计算机工程与应用》 CSCD 北大核心 2017年第17期117-122,共6页 Computer Engineering and Applications
基金 国家自然科学基金(No.61502204) 江苏省产学研联合创新资金-前瞻性联合研究项目(No.BY2014024 No.BY2014023-362014 No.BY2014023-25)
关键词 数据中心网络 能耗优化 拓扑感知 多维最佳适应 预测模型 迁移代价 拥塞控制 data center networks energy consumption optimization topology-aware multi-dimensional best fit decreasing prediction model migration cost congestion control
  • 相关文献

参考文献8

二级参考文献52

  • 1吴吉义,沈千里,章剑林,沈忠华,平玲娣.云计算:从云安全到可信云[J].计算机研究与发展,2011,48(S1):229-233. 被引量:54
  • 2McCullough JC, Agarwal Y, Chandrashekar J, Kuppuswamy S, Snoeren AC, Gupta RK. Evaluating the effectiveness of model- based power characterization. In: Proc. of the USENIX Annual Technical Conf. USENIX Association Berkeley, 2011. 12. https://www.usenix.org/legacy/events/atc 11/tech/final_files/McCullough.pdf. 被引量:1
  • 3Pakbaznia E, Pedram M. Minimizing data center cooling and server power costs. In: Proc. of the 14th ACM/IEEE Int'l Symp. on Low Power Electronics and Design. New York: ACM Press, 2009. 145-150. [doi: 10.1145/1594233.1594268]. 被引量:1
  • 4Bash C, Forman G. Cool job allocation: Measuring the power savings of placing jobs at cooling-efficient locations in the data center. In: Proc. of the 14th USENIX Annual Technical Conf. USENIX Association Berkeley, 2007. 138-140. http://dl.acm.org/ citation.cfm?id= 1364414. 被引量:1
  • 5Moreno-Vozmediano R, Montero RS, Llorente IM. Key challenges in cloud computing: Enabling the future Internet of services. Internet Computing, IEEE, 2013,17(4):18-25. [doi: 10.1109/MIC.2012.69]. 被引量:1
  • 6Barbulescu M, Grigoriu RO, Neculoiu G, Halcu I, Sandulescu VC, Niculescu-Faida O, Marinescu M, Marinescu V. Energy efficiency in cloud computing and distributed systems. In: Proc. of the 2013 14th RoEduNet Int'l Conf. on Networking in Education and Research. IEEE, 2013.1-5. [doi: 10.1109/RoEduNet.2013.6714197]. 被引量:1
  • 7Fan X, Weber WD, Barroso LA. Power provisioning for a warehouse-sized computer. ACM SIGARCH Computer Architecture News, 2007,35(2):13-23. [doi: 10.1145/1250662.1250665]. 被引量:1
  • 8Hsu CH, Poole SW. Power signature analysis of the SPECpower_ssj2008 Benchmark. In: Proc. of the 2011 14th IEEE Int'l Symp. on Performance Analysis of Systems and Software (ISPASS). IEEE, 2011. 227-236. Idol: 10.1109/ISPASS.2011.5762739]. 被引量:1
  • 9Beloglazov A, Abawajy J, Buyya R. Energy-Aware resource allocation heuristics for efficient management of data centers for cloud computing. Future Generation Computer Systems, 2012,28(5):755-768. [doi: 10.10 t 6/j.future.2011.04.017]. 被引量:1
  • 10Eeonomou D, Rivoire S, Kozyrakis C, Ranganathan P. Full-System power analysis and modeling for server environments. In: Proc. of the l 4th Int' 1 Syrup. on Computer Architecture. IEEE, 2006, 70-77. http://citeseerx.ist.psu.edu/viewdoc/summary?doi= 10.1.1.84. 1332. 被引量:1

共引文献447

同被引文献17

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部