摘要
A mobile edge cloud provides a platform to accommodate the offloaded traffic workload generated by mobile devices.It can significantly reduce the access delay for mobile application users.However,the high user mobility brings significant challenges to the service provisioning for mobile users,especially to delay-sensitive mobile applications.With the objective to maximize a profit,which positively associates with the overall admitted traffic served by the local edge cloud,and negatively associates with the access delay as well as virtual machine migration delay,we study a fundamental problem in this paper:how to update the service provisioning solution for a given group of mobile users.Such a profit-maximization problem is formulated as a nonlinear integer linear programming and linearized by absolute value manipulation techniques.Then,we propose a framework of heuristic algorithms to solve this Nondeterministic Polynomial(NP)-hard problem.The numerical simulation results demonstrate the efficiency of the devised algorithms.Some useful summaries are concluded via the analysis of evaluation results.
A mobile edge cloud provides a platform to accommodate the offloaded traffic workload generated by mobile devices.It can significantly reduce the access delay for mobile application users.However,the high user mobility brings significant challenges to the service provisioning for mobile users,especially to delay-sensitive mobile applications.With the objective to maximize a profit,which positively associates with the overall admitted traffic served by the local edge cloud,and negatively associates with the access delay as well as virtual machine migration delay,we study a fundamental problem in this paper:how to update the service provisioning solution for a given group of mobile users.Such a profit-maximization problem is formulated as a nonlinear integer linear programming and linearized by absolute value manipulation techniques.Then,we propose a framework of heuristic algorithms to solve this Nondeterministic Polynomial(NP)-hard problem.The numerical simulation results demonstrate the efficiency of the devised algorithms.Some useful summaries are concluded via the analysis of evaluation results.
基金
partially supported by JSPS KAKENHI under Grant Number JP16J07062