期刊文献+

Risk of shear failure and extensional failure around over-stressed excavations in brittle rock 被引量:10

下载PDF
导出
摘要 The authors investigate the failure modes surrounding over-stressed tunnels in rock.Three lines of investigation are employed:failure in over-stressed three-dimensional(3D) models of tunnels bored under 3D stress,failure modes in two-dimensional(2D) numerical simulations of 1000 m and 2000 m deep tunnels using FRACOD,both in intact rock and in rock masses with one or two joint sets,and finally,observations in TBM(tunnel boring machine) tunnels in hard and medium hard massive rocks.The reason for 'stress-induced' failure to initiate,when the assumed maximum tangential stress is approximately(0.4-0.5)σ_c(UCS,uniaxial compressive strength) in massive rock,is now known to be due to exceedance of a critical extensional strain which is generated by a Poisson's ratio effect.However,because similar 'stress/strength' failure limits are found in mining,nuclear waste research excavations,and deep road tunnels in Norway,one is easily misled into thinking of compressive stress induced failure.Because of this,the empirical SRF(stress reduction factor in the Q-system) is set to accelerate as the estimated ratio σ_(θmax)/σ_c >> 0.4.In mining,similar 'stress/strength' ratios are used to suggest depth of break-out.The reality behind the fracture initiation stress/strength ratio of '0.4' is actually because of combinations of familiar tensile and compressive strength ratios(such as 10) with Poisson's ratio(say0.25).We exceed the extensional strain limits and start to see acoustic emission(AE) when tangential stress σθ ≈ 0.4σc,due to simple arithmetic.The combination of 2D theoretical FRACOD models and actual tunnelling suggests frequent initiation of failure by 'stable' extensional strain fracturing,but propagation in 'unstable' and therefore dynamic shearing.In the case of very deep tunnels(and 3D physical simulations),compressive stresses may be too high for extensional strain fracturing,and shearing will dominate,both ahead of the face and following the face.When shallower,the concept of 'extensional strain initiation b The authors investigate the failure modes surrounding over-stressed tunnels in rock.Three lines of investigation are employed:failure in over-stressed three-dimensional(3D) models of tunnels bored under 3D stress,failure modes in two-dimensional(2D) numerical simulations of 1000 m and 2000 m deep tunnels using FRACOD,both in intact rock and in rock masses with one or two joint sets,and finally,observations in TBM(tunnel boring machine) tunnels in hard and medium hard massive rocks.The reason for 'stress-induced' failure to initiate,when the assumed maximum tangential stress is approximately(0.4-0.5)σ_c(UCS,uniaxial compressive strength) in massive rock,is now known to be due to exceedance of a critical extensional strain which is generated by a Poisson's ratio effect.However,because similar 'stress/strength' failure limits are found in mining,nuclear waste research excavations,and deep road tunnels in Norway,one is easily misled into thinking of compressive stress induced failure.Because of this,the empirical SRF(stress reduction factor in the Q-system) is set to accelerate as the estimated ratio σ_(θmax)/σ_c >> 0.4.In mining,similar 'stress/strength' ratios are used to suggest depth of break-out.The reality behind the fracture initiation stress/strength ratio of '0.4' is actually because of combinations of familiar tensile and compressive strength ratios(such as 10) with Poisson's ratio(say0.25).We exceed the extensional strain limits and start to see acoustic emission(AE) when tangential stress σθ ≈ 0.4σc,due to simple arithmetic.The combination of 2D theoretical FRACOD models and actual tunnelling suggests frequent initiation of failure by 'stable' extensional strain fracturing,but propagation in 'unstable' and therefore dynamic shearing.In the case of very deep tunnels(and 3D physical simulations),compressive stresses may be too high for extensional strain fracturing,and shearing will dominate,both ahead of the face and following the face.When shallower,the concept of 'extensional strain initiation b
出处 《Journal of Rock Mechanics and Geotechnical Engineering》 CSCD 2017年第2期210-225,共16页 岩石力学与岩土工程学报(英文版)
  • 相关文献

同被引文献125

引证文献10

二级引证文献60

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部