期刊文献+

基于多特征融合的视频火焰检测方法研究 被引量:16

Video Fire Detection Based on Fusion of Multiple Features
下载PDF
导出
摘要 视频火焰检测对消防安全具有重要的实际意义。针对目前视频火焰检测算法检测率低、误检率高的不足,提出一种综合运动特征检测、颜色特征分析和基于层次分析法的火焰多种动态特征融合的火焰检测方法。首先利用改进的选择性背景更新模型获取视频图像中运动前景目标,然后通过火焰颜色检测识别提取出可疑的火焰目标,再分析火焰的频闪特征、尖角特征、圆形度特征、面积增长特征和整体移动特征,最后提出一种基于层次分析法的火焰多种动态特征融合的检测识别方法。通过建立的火焰视频库的实验结果表明,提出的检测方法检测准确率高,具有较好的可靠性和鲁棒性。 Video fire detection has important practical significance for fire safety.According to low detection rate and high false-alarm rate in the current flame detection algorithm,a novel method to detect flame is proposed,which combined flame motion detection,color clues and realized the multi-feature fusion based on the analytic hierarchy process(AHP).Firstly,the background modeling is carried out by optimizing the selective background updating to extract the fire-like moving region.Secondly,the color analysis technique is applied to extract suspiciousflametarget.Thirdly,study the dynamic features of flame and discuss detailed frequency property,angle,roundness characteristics,areagrowth and overall movement of the flame.Finally,a method of realizing the multi-feature fusion based on AHP for calculating the weight of the dynamic features of flame is proposed.The experimental results on the flame video library show that the proposed method is accurate and robust,which has high detection rate and low false-alarm rate.
作者 曾思通 吴海彬 沈培辉 ZENG Sitong;WU Haibin;SHEN Peihui(Mechanical Engieering Department, Fujian Chuanzheng Communications College, Fuzhou Fujian 350007, China;College of Mechanical Engineering and Automation, Fuzhou University, Fuzhou Fujian 350108, China)
出处 《图学学报》 CSCD 北大核心 2017年第4期549-557,共9页 Journal of Graphics
基金 国家自然科学基金项目(51175084) 福建省自然科学基金项目(2015J01186) 福建省教育厅科技基金项目(JA15662)
关键词 火焰检测 背景更新 颜色检测 动态特性 层次分析法 fire detection background updating color detection dynamic features analytic hierarchy process
  • 相关文献

参考文献7

二级参考文献84

  • 1贾华.层次分析法中权重算法的一种改进[J].武测科技,1995(3):25-30. 被引量:25
  • 2范维澄,刘乃安.中国火灾科学基础研究进展与展望[J].中国科学技术大学学报,2006,36(1):1-8. 被引量:49
  • 3张淑丽,叶满昌.导弹武器系统仿真可信度评估方法研究[J].计算机仿真,2006,23(5):48-52. 被引量:13
  • 4李晓歌 邵丽红 李娜.人工神经网络BP算法的实现.人工智能及识别技术,2007,(12):921-924. 被引量:2
  • 5HEALEY G, SLATER D, LIN T, et al. A system for realtime fire detection [C]∥ IEEE Computer Vision and Pattern Recognition Conference. New York: IEEE, 1993: 605-606. 被引量:1
  • 6PHILLIPS W, SHAH M, LOBO N. Flame recognition in video [C]∥ Proceedings of the 5th IEEE Workshop on Applications of Computer Vision. Palm Springs: IEEE, 2000: 224-229. 被引量:1
  • 7LIU C B, AHUJA N. Vision based fire detection [C]∥ IEEE International Conference on Pattern Recognition. Washington DC: IEEE, 2004: 134-137. 被引量:1
  • 8TOREYIN B U, DEDEOGLU Y, GUDUKBAY U, et al. Computer vision based method for realtime fire and flame detection [J]. Pattern Recognition Letters, 2006, 27(1): 49-58. 被引量:1
  • 9TOREYIN B U, DEDEOGLU Y, GUDUKBAY U, et al. Realtime fire and flame detection in video [C]∥ International Conference on Acoustics Speech, and Signal Processing. Philadelphia: IEEE, 2005: 669-672. 被引量:1
  • 10TOREYIN B U, DEDEOGLU Y, CETIN A E. Flame detection in video using hidden Markov models [C]∥ International Conference on Image Processing. Genoa: IEEE, 2005: 1230-1233. 被引量:1

共引文献327

同被引文献134

引证文献16

二级引证文献71

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部