期刊文献+

推广KP方程的非奇异有理解 被引量:1

Nonsingular Rational Solutions to the Generalized KP Equation
下载PDF
导出
摘要 借助Maple软件的直接符号计算,得到推广KP方程的非奇异有理解.在一定的条件下,(2+1)维推广KP方程具有在空间所有方向都趋于零的lump解,其解涉及六个自由参数;而(3+1)维推广KP方程有lump类型的一族非奇异有理解,其解涉及八个自由参数. It turns out in this paper that the nonsingular rational solution as a class of generalized Kadomtsev-Petviashvili(KP)equation is obtained via the direct symbolic computation with Maple software.Under a certain condition,the(2+1)-dimensional generalized KP equation with a class of lump solutions,rationally localized in all directions in the space is presented,applying its Hirota bilinear form.The resulting lump solutions contain six free parameters.While the nonsingular rational solutions of the(3+1)-dimensional generalized KP equation with a class of lump-type solutions are involved in eight free parameters.
作者 程丽 CHENG Li(Normal school, Jinhua Polytechnic , Jinhua, China 321017)
出处 《温州大学学报(自然科学版)》 2017年第3期1-7,共7页 Journal of Wenzhou University(Natural Science Edition)
关键词 推广KP方程 双线性形式 非奇异有理解 Lump解 Generalized KP Equation Hirota Bilinear Form Nonsingular Rational Solution Lump Solution
  • 相关文献

参考文献1

二级参考文献49

  • 1V.E. Zakharov and A.B. Shabat, Sov. Phys. Jetp. 34 (1972) 62. 被引量:1
  • 2C.S. Gardner, J.M. Greene, M.D. Kruskal, and R.M. Miura, Phys. Rev. Lett. 19 (1967) 1095. 被引量:1
  • 3C. Rogers and W.K. Schief, Backlund and Darboux Transformations: Geometry and Modern Applications in Soliton Theory, Canbridge University Press, Cambridge (2002). 被引量:1
  • 4R.M. Miura, Backlund Transformation, Springer-Verlag, Berlin (1978). 被引量:1
  • 5J. Weiss, M. Tabor, and G. Carnevale, J. Math. Phys. 24 (1983) 522. 被引量:1
  • 6S.Y. Lou, Z. Naturforsch. 53a (1998) 251. 被引量:1
  • 7L.L. Chen and S.Y. Lou, Z. Naturforsch. 53a (1998) 689. 被引量:1
  • 8L.L. Chen and S.Y. Lou, Commun. Theor. Phys. 29 (1998) 313. 被引量:1
  • 9S.Y. Lou, J. Math. Phys. 39 (1998) 2112. 被引量:1
  • 10S.Y. Lou, Acta. Phys. Sin-Ch. Ed. 47 (1998) 1937. 被引量:1

共引文献1

同被引文献11

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部