摘要
借助Maple软件的直接符号计算,得到推广KP方程的非奇异有理解.在一定的条件下,(2+1)维推广KP方程具有在空间所有方向都趋于零的lump解,其解涉及六个自由参数;而(3+1)维推广KP方程有lump类型的一族非奇异有理解,其解涉及八个自由参数.
It turns out in this paper that the nonsingular rational solution as a class of generalized Kadomtsev-Petviashvili(KP)equation is obtained via the direct symbolic computation with Maple software.Under a certain condition,the(2+1)-dimensional generalized KP equation with a class of lump solutions,rationally localized in all directions in the space is presented,applying its Hirota bilinear form.The resulting lump solutions contain six free parameters.While the nonsingular rational solutions of the(3+1)-dimensional generalized KP equation with a class of lump-type solutions are involved in eight free parameters.
作者
程丽
CHENG Li(Normal school, Jinhua Polytechnic , Jinhua, China 321017)
出处
《温州大学学报(自然科学版)》
2017年第3期1-7,共7页
Journal of Wenzhou University(Natural Science Edition)
关键词
推广KP方程
双线性形式
非奇异有理解
Lump解
Generalized KP Equation
Hirota Bilinear Form
Nonsingular Rational Solution
Lump Solution