期刊文献+

融合直方图高阶统计特征与GLCM特征的室内红外图像人群密度分类 被引量:5

Indoor Crowd Density Classification in Infrared Images Based on Fusing High-order Statistics of Histogram with Gray Level Co-occurrence Matrix Features
下载PDF
导出
摘要 公共场所的人群密度信息在公共安全、交通管理、应急减灾等方面具有重要作用,采用红外技术,可以在拍摄人群图像时避免环境光照影响。为了实现室内场景下的红外图像人群密度分类,提出一种融合灰度直方图高阶统计特征与灰度共生矩阵特征的人群密度分类方法。首先,根据红外图像的特点,分析并提取样本图像灰度直方图的高阶统计特征,随后与提取的灰度共生矩阵特征串行融合,最后作为多分类支持向量机的输入,对不同人群密度等级进行分类。实验结果表明,提出的方法对于不同密度人群图像的分类准确率可达92.13%,同时特征向量提取简洁、算法耗时短。 The crowd density information in public places plays an important role in public safety,traffic management,and disaster reduction in emergencies.The use of infrared technology can avoid the influence of ambient light while capturing crowd images.In order to realize indoor crowd density classification in infrared images,this paper proposes a method that fuses high-order statistics of a grayscale histogram with gray level co-occurrence matrix features(GLCM).First,considering the characteristics of infrared images,this paper analyzes and extracts the high-order statistics of the grayscale sample image histograms.Next,the histogram and GLCM features of sample images are fused serially.Finally,the fusion feature is input to the multi-class support vector machine and the classified crowd density level is output.The experimental results show that the proposed method can achieve92.13%accuracy for different crowd density classifications in infrared images,with fewer features in less time.
作者 李熙莹 黄秋筱 LI Xiying;HUANG Qiuxiao(Key Laboratory of Intelligent Image Analysis and Application Technology, Guangdong Provincial Key Laboratory of Intelligent Transportation System, School of Engineering, Sun Yat-sen University, Guangzhou 510006, China)
出处 《红外技术》 CSCD 北大核心 2017年第7期626-631,637,共7页 Infrared Technology
基金 国家自然科学基金(U1611461)
关键词 人群密度分类 红外图像 直方图高阶统计特征 灰度共生矩阵 crowd density classification infrared image high-order statistics of histogram gray level co-occurrence matrix
  • 相关文献

参考文献6

二级参考文献37

  • 1Chan A B,Vasconcelos N.Bayesian Poisson Regression for Crowd Counting[J].Appears in IEEE Int'l Conf on Computer Vision,Kyoto,2009:1-5. 被引量:1
  • 2Rahmalan H,Nixon M,Carter J.On Crowd Density Estimation for Surveillance[J].The Institution of Engineering and Technology Conference on Crime and Security,2006:540-545. 被引量:1
  • 3Marana A N,Velastin S A,Costa L F,et al.Automatic Estimation of Crowd Density Using Texture[J].Safety Science,1998,28(3):165-175. 被引量:1
  • 4阮秋琦.数字图像处理[M].北京:电子工业出版社,2001.. 被引量:36
  • 5Davie A C, Yin J H, Velastin S A. Crowd. Monitoring Using Image Processing [J]. Electronics & Communication Engineering Journal, 1995, 7(1): 37-47. 被引量:1
  • 6Siu-Yang Cho, Tommy W S Chow, Chi-Tat Leung. A Neural-Based Crowd Estimation by Hybrid Global Learning Algorithm [J], IEEE Transaction on, 1999, 29(4): 535-541. 被引量:1
  • 7A N Marana, L F Costa, R A Lotufo, S A Velastin. On the Efficacy of Texture Analysis for Crowd Monitoring [A]. Computer Graphics, Image Processing, and Vision, 1998. Proceedings. SIBGRAPI '98. International Symposium on [C]. 20-23 Oct. 1998. 被引量:1
  • 8冯建辉,杨玉静.基于灰度共生矩阵提取纹理特征图像的研究[J].北京测绘,2007,21(3):19-22. 被引量:131
  • 9孙继平,陈伟,王福增,唐亮,李郴.概率神经网络在矿井红外监控图像识别中的应用[J].煤炭学报,2007,32(11):1206-1210. 被引量:12
  • 10胡波,李晓华,沈兰荪.场景监控中的人群密度估计[J].电路与系统学报,2007,12(6):19-22. 被引量:19

共引文献31

同被引文献47

引证文献5

二级引证文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部