摘要
为解决图像在不同显示设备上进行缩放时显著目标易变形、微小目标易删除和多显著目标易融合等问题,提出一种基于贝叶斯模型的内容保持图像缩放算法。首先,用凸包和背景先验共同获得贝叶斯模型所需的先验概率和似然估计,代入贝叶斯模型算出显著图;其次,将梯度图与显著图相乘获得新梯度图,通过求新梯度图和显著图之和获得复合能量图;最后,利用该复合能量图进行缝缩放。实验结果表明,该缩放算法与原缝缩放算法相比解决了显著目标易变形和微小目标易删除的问题,减少了多显著目标易融合的现象。
In order to solve the problems that salient objects easy to be deformed,small objects easy to be deleted and multi-salient objects easy to be fused as the image resize in different display devices,this paper presents a new content-aware image resizing algorithm based on Bayesian model.The algorithm firstly uses the convex hull and the background prior to obtain the prior probability and the likelihood estimation required by Bayesian model,and calculate the saliency map using the Bayesian model.Secondly,after the new gradient map is obtained by multiplying the gradient map and the saliency map,the new gradient map and the saliency map gets a composite energy map.Finally,we use the composite energy map to resize the map by seam carving.The experimental results show that the algorithm compared with the previous algorithm can overcome problems of salient objects deformation and small objects,and reduces the happening of the multi objects fusion significantly.
作者
王燕玲
李广伦
林晓
WANG Yanling;LI Guanglun;LIN Xiao(College of Computer and Information, Luoyang Normal University, Luoyang Henan 471934, China;College of electrical Engineering and Automation, Luoyang Institute of Science and Technology, Luoyang Henan 471013, China;The College of Information, Mechanical and Electrical Engineering, Shanghai Normal University, Shanghai 200234, China)
出处
《图学学报》
CSCD
北大核心
2017年第3期396-402,共7页
Journal of Graphics
基金
国家自然科学基金项目(U1304616
61502220)
河南省科技攻关计划项目(1721023106361)
关键词
内容保持
显著性检测
贝叶斯模型
背景先验
content-aware
saliency detection
Bayesian model
prior distribution