期刊文献+

Fabrication of an electrochemical sensor for determination of doxorubicin in human plasma and its interaction with DNA 被引量:2

Fabrication of an electrochemical sensor for determination of doxorubicin in human plasma and its interaction with DNA
下载PDF
导出
摘要 In this work, an electrochemical sensor was fabricated for determination of an anthracycline, doxorubicin(DOX) as a chemotherapy drug in plasma based on multi-walled carbon nanotubes modified platinum electrode(Pt/MWCNTs). DOX was effectively accumulated on the surface of modified electrode and generated a pair of redox peaks at around 0.522 and 0.647 V(vs. Ag/Ag Cl) in Britton Robinson(B-R) buffer(p H 4.0, 0.1 M). The electrochemical parameters including p H, type of buffer, accumulation time, amount of modifier and scan rate were optimized. Under the optimized conditions, there was a linear correlation between cathodic peak current and concentration of DOX in the range of 0.05–4.0 μg/m L with the detection limit of 0.002 μg/m L. The number of electron transfers(n) and electron transfer-coefficient(α) were estimated as 2.0 and 0.25, respectively. The constructed sensor displayed excellent precision, sensitivity, repeatability and selectivity in the determination of DOX in plasma. Moreover, cyclic voltammetry studies of DOX in the presence of DNA showed an intercalation mechanism with binding constant(K_b) of 1.12×10~5L/mol. In this work, an electrochemical sensor was fabricated for determination of an anthracycline, doxorubicin (DOX) as a chemotherapy drug in plasma based on multi-walled carbon nanotubes modified platinum electrode (Pt/MWCNTs). DOX was effectively accumulated on the surface of modified electrode and generated a pair of redox peaks at around 0.522 and 0.647 V (vs. Ag/AgCl) in Britton Robinson (B-R) buffer (pH 4.0, 0.1 M). The electrochemical parameters including pH, type of buffer, accumulation time, amount of modifier and scan rate were optimized. Under the optimized conditions, there was a linear correlation between cathodic peak current and concentration of DOX in the range of 0.05-4.0 µg/mL with the detection limit of 0.002 µg/mL. The number of electron transfers (n) and electron transfer-coefficient (α) were estimated as 2.0 and 0.25, respectively. The constructed sensor displayed excellent precision, sensitivity, repeatability and selectivity in the determination of doxorubicin in plasma. Moreover, cyclic voltammetry studies of DOX in the presence of DNA showed an intercalation mechanism with binding constant (K<sub>b</sub>) of 1.12×10<sup>5</sup> L/mol.
出处 《Journal of Pharmaceutical Analysis》 SCIE CAS CSCD 2017年第1期27-33,共7页 药物分析学报(英文版)
基金 the research council of Gachsaran Branch, Islamic Azad University, Iran for supporting this project under Grant no. 25518
关键词 DOXORUBICIN MWCNTS ELECTROCHEMICAL sensor Human PLASMA Doxorubicin-DNA INTERACTION Doxorubicin MWCNTs Electrochemical sensor Human plasma Doxorubicin-DNA interaction
  • 相关文献

参考文献2

二级参考文献3

共引文献4

同被引文献3

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部