期刊文献+

基于Stentiford视觉模型的改进

Improvement of Stentifeld visual model algorithm
下载PDF
导出
摘要 基于视觉模型的图像感兴趣区提取方法,在图像感兴趣区域提取领域,有着得天独厚的优势:首先,它贴合人眼视觉效果,因此可以较为准确地表示视觉的真实"意图";其次,方法过程便于实现,处理效率比较高。基于Stentifold视觉模型的方法因其实现简单且效果显著而成为其中的众多代表之一,但其也存在结果随机性过大,对细节过于敏感,计算耗时的缺点。为此,尝试通过直方图统计、均匀局部二值模式(uniform LBP)结合的方法,对其进行改进,并取得了理想的效果。 The extraction method of image region of interest based on visual model possesses a distinctive superiority inextracting image region of interest area.Firstly,it fits human eye’s visual effect,so its outcome can express the visual’sreal intention accurately in a large extent.Next,its procedure is more likely to achieve and its processing efficiency ismuch higher.The visual model based on Stentifold has become one of the presentations for its simple method and obviouseffect.But it is also accompanied with the shortcomings that the results are random,too sensitive to details and the timeconsumingin calculating.For this reason,this papeer first attempts to adopt the method of combining histogram and uniformLBP,and make improvement of this method which finally achieves an ideal effect.
作者 范向阳 王诚 FAN Xiangyang;WANG Cheng(College of Telecommunications and Information Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210003, China)
出处 《计算机工程与应用》 CSCD 北大核心 2017年第7期186-191,共6页 Computer Engineering and Applications
基金 国家自然科学基金(No.61071167)
关键词 Stentifold模型 直方图统计 均匀局部二值模式 Stentifold model histogram statistics uniform LBP
  • 相关文献

参考文献8

二级参考文献49

  • 1张鹏,王润生.基于视点转移和视区追踪的图像显著区域检测[J].软件学报,2004,15(6):891-898. 被引量:53
  • 2张娜.图像增强技术的研究[J].计算机仿真,2007,24(1):192-195. 被引量:24
  • 3杨晨.雾天图像增强算法研究.西安:南京理工大学,2007. 被引量:1
  • 4高守传,姚领田.Visual C++-数字图像处理与工程应用篇.北京:中国铁道出版社,2006. 被引量:1
  • 5Itti L, Koch C, Niebur E. A model of saliencybased vi- sual attention for rapid scene analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1998, 20(11): 1254 - 1259. 被引量:1
  • 6Zhang D, Islam M, Lu G. A review on automatic image annotation techniques. Pattern Recognition, 2012, 45(1): 346-362. 被引量:1
  • 7Ayadi M, Kamel M, Karray F. Survey on speech emotion recognition: features, classification schemes, and databases. Pattern Recognition, 2011, 44(3): 572-587. 被引量:1
  • 8Toet A. Computational versus psychophysical bottom-up image saliency: a comparative evaluation study. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(11): 2131-2146. 被引量:1
  • 9Harel J, Koch C, Perona P. Graph-based visual saliency. In: Proceedings of the 21st Annual Conference on Neural Infor- mation Processing Systems. Vancouver, Canada: The MIT Press, 2007. 545-552. 被引量:1
  • 10Achanta R, Estrada F, Wils P, Susstrunk S. Salient region detection and segmentation. In: Proceedings of the 6th Inter- national Conference on Computer Vision Systems. Santorini, Greece: Springer, 2008. 66-75. 被引量:1

共引文献73

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部