期刊文献+

高效求解方法的核典型相关分析算法

Kernel Canonical Correlation Analysis Based on Solving Method with High Efficiency
下载PDF
导出
摘要 针对高维小样本数据在核化图嵌入过程中出现的复杂度问题,引入基于核化图嵌入(kernel extension of graph embedding)的快速求解模型,提出了一种新的KGE/CCA算法(KGE/CCA-S_t)。首先将样本数据投影到维数远低于原样本空间维数的总体散度矩阵对应的秩空间,然后采用核典型相关分析进行特征提取,整个过程减少了核矩阵的计算量。在Yale人脸库和JAFFE人脸库上进行仿真实验,结果表明这种KGE/CCA算法的识别率明显优于KFD、KLPP和KNPE算法的识别率;和传统的KGE/CCA算法相比,在不影响识别率的情况下,KGE/CCA-S_t算法有效减少了计算时间。 Aiming at the problem of the complexity of high dimensional small sample data during the process of KGE(kernel extension of graph embedding),by a fast calculation model based on KGE,this paper proposes a new KGE/CCA algorithm(KGE/CCA-St)which can reduce the computational complexity of kernel matrix.Firstly,sample dataare projected into corresponding rank space of total scatter matrix in which the dimension is far lower than that in originalsample space.Then,kernel canonical correlation analysis is used for feature extraction,the calculation of kernelmatrix is decreased in this process.Through the simulation experiments on Yale face database and JAFFE face database,the results show that the recognition rate of the KGE/CCA algorithms is significantly better than that of KFD,KLPP and KNPE algorithms.Compared with the traditional KGE/CCA algorithm,KGE/CCA-St can effectivelyreduce the computation time without affecting the recognition rate.
作者 林克正 王海燕 李骜 荣友湖 LIN Kezheng;WANG Haiyan;LI Ao;RONG Youhu(School of Computer Science and Technology, Harbin University of Science and Technology, Harbin 150080, China)
出处 《计算机科学与探索》 CSCD 北大核心 2017年第2期286-293,共8页 Journal of Frontiers of Computer Science and Technology
基金 国家自然科学基金No.61501147 黑龙江省自然科学基金No.F2015040~~
关键词 核化图 典型相关分析 降维处理 散度矩阵 kernel extension of graph canonical correlation analysis dimension reducing processing scatter matrix
  • 相关文献

参考文献11

二级参考文献115

  • 1孙权森,曾生根,杨茂龙,王平安,夏德深.基于典型相关分析的组合特征抽取及脸像鉴别[J].计算机研究与发展,2005,42(4):614-621. 被引量:29
  • 2孙权森,曾生根,王平安,夏德深.典型相关分析的理论及其在特征融合中的应用[J].计算机学报,2005,28(9):1524-1533. 被引量:89
  • 3Turk M, Pentland A. Face recognition using eigenfaces [C] //Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Maui, 1991:586-591 被引量:1
  • 4Belhumeur P, Hespanha J, Kriegman D. Eigenfaces vs. fisherfaces: recognition using class specific linear projection [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997, 19(7): 711-720 被引量:1
  • 5Li S Z, Chu R F, Liao S C, etal. Illumination invariant face recognition using near-infrared images [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007, 29(4): 627-639 被引量:1
  • 6Wiskott L, Fellous J M, Kruger N, et al. Face recognition by elastic bunch graph matching [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997, 19 (7) : 775-779 被引量:1
  • 7Yang P, Shan S G, Gao W. Face recognition using Ada-Boosted Gabor features [C] //Proceedings of the 6th IEEE International Conference on Automatic Face and Gesture Recognition, Seoul, 2004:356-361 被引量:1
  • 8Blanz V, Vetter T. Face recognition based on fitting a 3D morphable model [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003, 25(9) : 1063-1074 被引量:1
  • 9Socolinsky D, Andrea S, Neuheisel J. Face recognition with visible and thermal infrared imagery [J]. Computer Vision and Image Understanding, 2003, 91(1-2): 72-114 被引量:1
  • 10Sun Q S, Heng P H, Jin Z, etal. Face recognition based on generalized canonical correlation analysis [C]//Proceedings of International Conference on Intelligent Computing, Hefei, 2005 : 958-967 被引量:1

共引文献107

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部