期刊文献+

特征融合与objectness加强的显著目标检测 被引量:4

Feature fusing and objectness enhanced approach of saliency detection
下载PDF
导出
摘要 显著目标检测是计算机视觉的重要组成部分,目的是检测图像中最吸引人眼的目标区域。针对显著检测中特征的适应性不足以及当前一些算法出现多检与漏检的问题,提出从"目标在哪儿"与"背景在哪儿"两个角度描述显著性的框架,进行特征融合来提高显著目标检测的准确率。从这两个角度分别提取图像的颜色区别性特征与边界先验特征并进行特征融合,使用objectness特征加强显著性,最终得到显著图。在MSRA-1000数据集上的评估中,该算法达到平均92.4%的准确率,能和最先进算法相媲美;而在CSSD、ECSSD数据集上的实验,该算法有更高的准确率,优势明显。实验结果表明所使用的特征之间能够互相补充,互相弥补,"目标在哪儿"与"背景在哪儿"的检测框架描述图像显著性具有合理性。 Saliency detection is a fundamental part of computer vision applications, and the goal is to detect important pixels or regions in an image which attracts human visual attention most. By analyzing some recent methods, a new approach is proposed to solve detection errors problems and to enhance the adaptation of features in saliency detection. It detects saliency in the perspective of both object and background and integrates multi features. It extracts color distinctness feature in the perspective of object and extracts boundary prior feature in the perspective of background, and then combines the two features to obtain the corresponding map. In order to keep accuracy, it uses objectness feature to refine the saliency of detected regions. In comparison experiments, it achieves an average precision of 92.4% on MSRA-1000 databases, and achieves higher precision on CSSD dataset and ECSSD dataset. Experimental results demonstrate the used features make up for each other, which can enhance the saliency detection accuracy.
作者 王娇娇 刘政怡 李辉 WANG Jiaojiao;LIU Zhengyi;LI Hui(College of Computer Science and Technology, Anhui University, Hefei 230601, China)
出处 《计算机工程与应用》 CSCD 北大核心 2017年第2期195-200,270,共7页 Computer Engineering and Applications
基金 高等学校博士学科点专项科研基金联合资助课题(No.20133401110009) 安徽高校省级自然科学研究项目(No.KJ2015A009)
关键词 计算机视觉 显著目标检测 边界先验 颜色区别性 objectness computer vision saliency detection boundary prior color distinctness objectness
  • 相关文献

同被引文献11

引证文献4

二级引证文献63

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部