期刊文献+

个性化推荐系统安全防护研究 被引量:1

Research on Security Protection of Personalized Recommendation System
下载PDF
导出
摘要 近年来,个性化推荐系统作为电子商务技术的一项重要研究内容,有效地解决了信息过载的问题,为用户提供了精准的个性化推荐服务并为厂商带来了更高的收益。但与此同时,随着数据规模的增大、用户信息数据重要性的提升,推荐系统安全问题开始受到广泛关注。个性化推荐系统如何保证用户数据安全,即使在恶意数据的干扰下仍能保证推荐系统的准确可靠亟待解决。文章就此,分析国内外的研究情况,首先介绍个性化推荐系统及其信任度的概念,明确了用户隐私数据安全对推荐系统的重要性;接着,介绍了常见的用户隐私数据保护策略;最后对推荐系统托攻击与其攻击检测算法进行归纳总结,并提出可供参考的解决方法。 In recent years, personalized recommendation system, as one of the important research issues of e-business technology, has effectively solved the “information-overload” problem and provides accurate personalized recommendation service and gains higher benefit at the same time. But with the constant expanding of the data scale and increasing importance of user information, the security problem of recommendation system has become a hotspot. The question that how personalized recommendation system can provide credible recommendation results and protect users’ privacyeven interfeved bymalicious data has become an import urgent problem now. This paper analyzes the research situation both at home and abroad. First,this paper explains the concept of the personalized recommendation system and its credibility, and emphasizes the importance of user privacy information in recommendation system, then introduces some common user privacy protection policies. Finally based on shilling attack and attack detection algorithm, this paper makes an inductive generalization and provides some solutions for reference.
作者 李洺吉 王晶 Li Mingji;Wang Jing(Beijing University of Posts and Telecommunications, Beijing 100876, China)
出处 《信息通信技术》 2016年第6期43-47,67,共6页 Information and communications Technologies
关键词 推荐系统 用户隐私 数据安全 个性化 Recommendation System User Privacy Data Security Personalization
  • 相关文献

参考文献3

二级参考文献27

  • 1余力,刘鲁,罗掌华.我国电子商务推荐策略的比较分析[J].系统工程理论与实践,2004,24(8):96-101. 被引量:45
  • 2余力,刘鲁.电子商务个性化推荐研究[J].计算机集成制造系统,2004,10(10):1306-1313. 被引量:104
  • 3Resnick,Varian.Recommender systems[J].Communications of the ACM,1997,40(3):56~58 被引量:1
  • 4Schafer J B,Konstan J,Riedl J.Recommender Systems in E-Commerce[c].In;EC'99 Proceedings of the First ACM Conference on Electronic Commerce,Denver,CO,1999.158~166 被引量:1
  • 5Herloeker J,Konstan J,Tervin L G,et al.Evaluating collaborative filtering recommender systems.ACM Transactions on Information Systems,2004,22(1):5~53 被引量:1
  • 6Ben J,Konstan J A,John R.E-commerce recommendation applications[R].University of Minnesota,2001 被引量:1
  • 7Billsus D,Pazzani M.Learning Collaborative Information Fihers[C].In:Proceedings of the International Conference on Machine Learning (Madison WI,July 1998),Morgan Kaufmann Publishers 被引量:1
  • 8Robin B.Hybrid Recommender Systems:Survey and Experiments[R].Department of Information Systems and Decision Sciences,California State University,Fullerton 被引量:1
  • 9Ben J,Konstan J A,John R.E-Commerce Recommendation Applications[R].University of Minnesota,2001 被引量:1
  • 10Burke R,Mobasher B,Zabicki R,et al.Identifying attack models for secure recommendation.In:Beyond Personalization:A Workshop on the Next Generation of Recommender Systems,San Diego,California,2005 被引量:1

共引文献28

同被引文献7

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部