期刊文献+

移动社交网络中基于共同邻居网络中心度的链路预测方法 被引量:5

Link prediction algorithm based on common neighbors network centrality in mobile social networks
下载PDF
导出
摘要 移动社交网络中的链路预测是指通过已知的网络节点以及移动社交网络结构等信息预测网络中尚未产生连边的两个节点之间产生链接的可能性。基于网络中心度的思想,提出一种适用于移动社交网络的链路预测算法。该算法利用节点网络中心度和共同邻居数来计算两个节点的相似性指标,两个节点的共同邻居数越多、共同邻居的网络中心度越高,则两个节点的相似度越高。另外,由于移动社交网络的动态性特征,还将考虑时间因素对预测结果的影响。将该方法与其他四种常用的链路预测方法进行比较,实验结果显示所提方法要优于其他方法。 Link prediction aims at estimating the likelihood of the existence of links between nodes in mobile social networks.This paper presented an improved algorithm for mobile social networks based on centrality of common neighbors. In this method,it used the network centrality and the number of common neighbors to calculate the node similarity. If the two nodes had more common neighbors and the node centrality of the common neighbors was higher,the similarity of two nodes were higher. In addition,this paper also considered the temporal information due to the fact that the behavior of links as time goes by. The experimental results show that the performance of the improved algorithm is superior to the four traditional link prediction algorithms.
作者 郑巍 潘倩 邓宇凡 Zheng Wei;Pan Qian;Deng Yufan(College of Software, Nanchang Hangkong University, Nanchang 330063 , China)
出处 《计算机应用研究》 CSCD 北大核心 2016年第9期2743-2746,共4页 Application Research of Computers
基金 国家自然科学基金资助项目(61363015 61262020) 国家自然科学青年基金资助项目(61501217) 江西省自然科学基金资助项目(20142BAB206026) 江西省教育厅青年科学基金项目(GJJ12457 GJJ13482)
关键词 网络中心度 共同邻居 链路预测 移动社交网络 network centrality common neighbors link prediction mobile social networks(MSNs)
  • 相关文献

参考文献2

二级参考文献220

  • 1GETOOR L,DIEHL C P.Link mining:a survey[J].ACM SIGKDD Explorations Newsletter,2005,7(2):3-12. 被引量:1
  • 2SARUKKAI R R.Link prediction and path analysis using markov chains[J].Computer Networks,2000,33(1-6):377-386. 被引量:1
  • 3ZHU J,HONG J,HUGHES J G Using markov chains for link prediction in adaptive web sites[J].Lect Notes Comput Sci,2002,2311:60-73. 被引量:1
  • 4POPESCUL A,UNGAR L.Statistical relational learning for link prediction[C] //Proceedings of the Workshop on Learning Statistical Models from Relational Data.New York:ACM Press,2003:81-87. 被引量:1
  • 5O'MADADHAIN J,HUTCHINS J,SMYTH P.Prediction and ranking algorithms for event-based network data[C] //Proceedings of the ACM SIGKDD 2005.New York:ACM Press,2005:23-30. 被引量:1
  • 6LIN D.An information-theoretic definition of similarity[C] //Proceedings of the 15th Intl Conf Mach.Learn..San Francisco,Morgan Kaufman Publishers,1998:296-304. 被引量:1
  • 7LIBEN-NOWELL D,KLEINBERG J.The link-prediction problem for social networks[J].J Am Soc Inform Sci Technol,2007,58(7):1019-1031. 被引量:1
  • 8CLAUSET A,MOORE C,NEWMAN M E J.Hierarchical structure and the prediction of missing links in networks[J].Nature,2008,453:98-101. 被引量:1
  • 9HOLLAND P W,LASKEY K B,LEINHARD S.Stochastic blockmodels:First steps[J].Social Networks,1983,5:109-137. 被引量:1
  • 10GUIMERA R,SALES-PARDO M.Missing and spurious interactions and the reconstruction of complex networks[J].Proc Natl Sci Acad USA,2009,106(52):22073-22078. 被引量:1

共引文献515

同被引文献36

引证文献5

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部