期刊文献+

Fisher线性判别式阈值优化方法研究 被引量:2

ON OPTIMISING THRESHOLDS OF FISHER LINEAR DISCRIMINANT
下载PDF
导出
摘要 Fisher线性判别式FLDs(Fisher linear discriminates)的常用阈值对不平衡数据集分类效果较差。以不平衡数据集为应用背景,主要研究各种阈值对FLDs分类性能的影响。认为影响FLDs性能的主要是类间分布区域不平衡而不是样本数不平衡,因此提出多个经验阈值,并依据分类精度从中选择优化阈值。大量实验结果表明,所提出的阈值优化选择方法能有效提高FLDs对不平衡数据集的分类性能。 The commonly used thresholds of Fisher linear discriminant (FLD ) always have poor classification result on imbalanced datasets.On application background of the imbalanced datasets,in this paper we mainly study the influence of various thresholds on FLD’s classification performance.We argue that for FLDs,it’s the imbalance of inter-class distribution regions rather than sample sizes that mainly impacts the performance of FLDs,and thus we develop several empirical thresholds and select the optimised thresholds based on classification accuracy.Extensive experimental results show that the classification performance of FLDs on imbalanced datasets is improved effectively with the use of the proposed optimised threshold selection method.
作者 李艳芳 高大启 Li Yanfang;Gao Daqi(School of Information Science and Engineering, East China University of Science and Technology, Shanghai 200237, China)
出处 《计算机应用与软件》 CSCD 2016年第6期141-145,共5页 Computer Applications and Software
基金 国家自然科学基金项目(21176077)
关键词 分类 Fisher线性判别式 阈值 不平衡数据集 Classification Fisher linear discriminant Thresholds Imbalanced dataset
  • 相关文献

参考文献10

  • 1Jain A K,Duin R P W,Mao J C.Statistical Pattern recognition:a review[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2000,22(1):4-37. 被引量:1
  • 2BekiosCalfa J,Buenaposada J M,Baumela L.Revisiting linear discriminatetechniques in gender recognition [J].IEEE Transactions on PatternAnalysis and Machine Intelligence,2011,33(4):858-864. 被引量:1
  • 3Rozza A,Lombardi G,Casiraghi E,et al.Novel Fisher discriminates classifiers[J].Pattern recognition,2012,45(10):3725-3737. 被引量:1
  • 4Lecun Y,Bottou L,Bengio Y,et al.Gradient-based learning applied todocument recognition [J].Proceedings of the IEEE,1998,86(11):2278-2324. 被引量:1
  • 5Muller K R,Mika S,Ratsch G,et al.An introduction to kernel-basedlearning algorithms [J].IEEE Transactions on Neural Networks ,2001,12(2):181-201. 被引量:1
  • 6Duda R 0,Hart P E,Stork D G.Pattern Classification [M].2nd ed.New York:John Wiley & Sons,Inc,2000. 被引量:1
  • 7Gao Daqi,Ding Jun, Zhu Changming.Integrated Fisher linear discriminates:An empirical study[J].Pattern Recognition,2014 ,47(2):789-805. 被引量:1
  • 8He Haibo,Edwardo A G.Learning from imbalanced data[J].IEEE Transactions on Knowledge and Data Engineering,2009,21(9):1558-1571. 被引量:1
  • 9Pernkopf F,Wohlmayr M.Tschiatschek S. Maximum margin Bayesiannetwork classifiers [J].IEEE Transactions on Pattern Analysis and MachineIntelligence,2012,34(3):521-532. 被引量:1
  • 10AlcalaFdez J,Fernandez A,Luengo J,et al.KEEL Data-Mining SoftwareTool:Data Set Repository, Integration of Algorithms and ExperimentalAnalysis Framework [J].Journal of Multiple-Valued Logic andSoft Computing,2011,17(2):255-287. 被引量:1

同被引文献24

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部