期刊文献+

基于Spark的并行频繁模式挖掘算法 被引量:13

Parallel frequence pattern mining algorithm based on Spark
下载PDF
导出
摘要 在大数据环境下Apriori频繁模式挖掘算法在数据处理过程具有预先设定最小阈值、时间复杂度高等缺陷,为此采用多阶段挖掘策略实现并行化频繁模式挖掘算法PTFP-Apriori。首先将预处理数据以模式树的形式存储,通过最为频繁的k个模式得到最优阈值。然后根据该值删除预期不能成长为频繁的模式以降低计算规模,并利用弹性分布式数据集RDD完成统计项集支持度计数、候选项集生成的工作。实验分析表明相比于传统的频繁模式挖掘算法,该算法具有更高的效率以及可扩展性。 Under the environment of big data, the frequent pattern mining algorithm Apriori has some defects, includingpresetting minimum threshold and high time complexity when in data processing process. Therefore, the multistage miningstrategy is adopted to realize the parallel frequent pattern mining algorithm(PTFP-Apriori). Firstly, the preprocessed datais stored in a pattern tree, and the optimal threshold is got by the most frequent K model. Subsequently, according to thethreshold, the frequent pattern that can’t grow up to be frequent patterns could be removed to reduce the computing scale.The RDD is used to accomplish the task of itemsets support counting and candidate itemsets generating. The experimentalresults show that the algorithm has higher effectivity and scalability than the traditional algorithm.
作者 曹博 倪建成 李淋淋 于苹苹 姚彬修 CAO Bo;NI Jiancheng;LI Linlin;YU Pingping;YAO Binxiu(College of Information Science and Engineering, Qufu Normal University, Rizhao, Shandong 276800, China;College of Software, Qufu Normal University, Qufu, Shandong 273100, China)
出处 《计算机工程与应用》 CSCD 北大核心 2016年第20期86-91,共6页 Computer Engineering and Applications
基金 国家自然科学基金(No.61402258) 山东省本科高校教学改革研究项目(No.2015M102) 校级教学改革研究项目(No.jg05021*)
关键词 大数据 频繁模式挖掘 TOP-K 模式树 并行计算 big data frequent pattern mining Top-k pattern tree parallel computing
  • 相关文献

参考文献15

  • 1马青霞,李广水,孙梅.频繁模式挖掘进展及典型应用[J].计算机工程与应用,2011,47(15):138-144. 被引量:6
  • 2Agrawal R.Mining association rules between sets of itemsin large databases[J].ACM Sigmod Record,1993,22(2):207-216. 被引量:1
  • 3Qiu Hongjian,Gu Rong,Yuan Chunfeng,et al.YAFIM:aparallel frequent itemset mining algorithm with Spark[C].2014 IEEE International Parallel & Distributed ProcessingSymposium Workshops(IPDPSW),2014:1664-1671. 被引量:1
  • 4Tanna P,Ghodasara Y.Frequent pattern mining based onImperative Tabularized Apriori Algorithm(ITAA)[C].IEEEInternational Conference on Electrical,Computer and CommunicationTechnologies,2015. 被引量:1
  • 5Gui F,Ma Y,Zhang F,et al.A distributed frequent itemsetmining algorithm based on Spark[C].International Conferenceon Computer Supported Cooperative Work in Design,2015. 被引量:1
  • 6Dam T L,Li K,Fournier-Viger P,et al.An efficient algorithmfor mining top-rank-k frequent patterns[J].AppliedIntelligence,2016:1-16. 被引量:1
  • 7章志刚,吉根林.一种基于FP-Growth的频繁项目集并行挖掘算法[J].计算机工程与应用,2014,50(2):103-106. 被引量:43
  • 8Li L,Zhang M.The strategy of mining association rule based on cloud computing[C].2011 International Conference on Business Computing and Global Informatization(BCGIN),2011:475-478. 被引量:1
  • 9陆嘉恒著..Hadoop实战[M].北京:机械工业出版社,2011:441.
  • 10Yin J,Zheng Z,Cao L,et al.Efficiently mining Top-K highutility sequential patterns[C].IEEE International Conferenceon Data Mining,2013:1259-1264. 被引量:1

二级参考文献81

共引文献47

同被引文献93

引证文献13

二级引证文献85

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部