期刊文献+

基于最近邻互信息的特征选择算法 被引量:8

Feature selection algorithm based on nearest-neighbor mutual information
下载PDF
导出
摘要 针对邻域信息系统的特征选择模型存在人为设定邻域参数值的问题。分别计算样本与最近同类样本和最近异类样本的距离,用于定义样本的最近邻以确定信息粒子的大小。将最近邻的概念扩展到信息理论,提出最近邻互信息。在此基础上,采用前向贪心搜索策略构造了基于最近邻互信息的特征算法。在两个不同基分类器和八个UCI数据集上进行实验。实验结果表明:相比当前多种流行算法,该模型能够以较少的特征获得较高的分类性能。 Feature selection of neighborhood information system is constrained by the neighborhood size. First, this paper calculates the distance between a given sample and its nearest samples with the same and different labels to define the concept of nearest-neighbor, and determines the size of nearest neighbor simultaneously. Second, the notion of nearest-neighbor is extended to Shannon information theory, and the concept of nearest neighbor mutual information is presented. Then, a forward greedy strategy is used to construct feature selection algorithm based on nearest-neighbor mutual information.Finally, experiments are conducted on eight UCI data sets and two different base classifiers. Experimental results show that the proposed algorithm selects a few features and effectively improves classification performance compared with other popular algorithms.
作者 王晨曦 林耀进 刘景华 林梦雷 WANG Chenxi;LIN Yaojin;LIU Jinghua;LIN Menglei(Department of Computer Engineering, Zhangzhou Institute of Technology, Zhangzhou, Fujian 363000, China;School of Computer Science, Minnan Normal University, Zhangzhou, Fujian 363000, China)
出处 《计算机工程与应用》 CSCD 北大核心 2016年第18期74-78,共5页 Computer Engineering and Applications
基金 国家自然科学基金(No.61303131) 福建省自然科学基金(No.2013J01028) 福建省教育厅科技项目(No.JA14192 No.JAT60866)
关键词 特征选择 最近邻 互信息 邻域互信息 feature selection nearest-neighbor mutual information neighborhood mutual information
  • 相关文献

参考文献20

  • 1Liang J,Wang F,Dang C,et al.An efficient rough featureselection algorithm with a multi-granulation view[J].InternationalJournal of Approximate Reasoning,2012,53:912-926. 被引量:1
  • 2Guyon I,Elisseeff A.An introduction to variable and featureselection[J].Journal of Machine Learning Research,2003,3:1157-1182. 被引量:1
  • 3Dash M,Liu H.Consistency-based search in feature selection[J].Artificial Intelligence,2003,151:155-176. 被引量:1
  • 4Zhu W,Si G,Zhang Y,et al.Neighborhood effective information ratio for hybrid feature subset evaluation and selection[J].Neurocomputing,2013,99:25-37. 被引量:1
  • 5Kononenko I.Estimation attributes:analysis and extensionsof RELIEF[C].Proceedings of the 1994 European Conferenceon Machine Learning,1994:171-182. 被引量:1
  • 6Lin Y,Li J,Lin P.Feature selection via neighborhoodmultigranulation fusion[J].Knowledge-Based Systems,2014,67:162-168. 被引量:1
  • 7Battiti R.Using mutual information for selecting featuresin supervised neural net learning[J].IEEE Transactions onNeural Networks,1994,5(4):537-550. 被引量:1
  • 8Peng H,Long F,Ding C.Feature selection based on mutualinformation:criteria of max-dependency,max-relevance,and min-redundancy[J].IEEE Transactions on Pattern Analysisand Machine Intelligence,2005,27(8):1226-1238. 被引量:1
  • 9Yu L,Liu H.Efficient feature selection via analysis ofrelevance and redundancy[J].Journal of Machine LearningResearch,2004,5(1):1205-1224. 被引量:1
  • 10Lin Y,Hu X,Wu X.Quality of information-based sourceassessment and selection[J].Neurocomputing,2014,133:95-102. 被引量:1

二级参考文献11

共引文献291

同被引文献61

引证文献8

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部