期刊文献+

Static and Transient Performance Prediction for CFB Boilers Using a Bayesian-Gaussian Neural Network

Static and Transient Performance Prediction for CFB Boilers Using a Bayesian-Gaussian Neural Network
原文传递
导出
摘要 A Bayesian-Gaussian Neural Network (BGNN) is put forward in this paper to predict the static and transient performance of Circulating Fluidized Bed (CFB) boilers. The advantages of this network over Back-Propagation Neural Networks (BPNNs), easier determination of topology, simpler and time saving in training process as well as selforganizing ability, make this network more practical in on-line performance prediction for complicated processes. Simulation shows that this network is comparable to the BPNNs in predicting the performance of CFB boilers. Good and practical on-line performance predictions are essential for operation guide and model predictive control of CFB boiIers, which are under research by the authors.
出处 《Journal of Thermal Science》 SCIE EI CAS CSCD 1997年第2期141-148,共8页 热科学学报(英文版)
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部