期刊文献+

支持向量机及其在函数逼近中的应用 被引量:17

Support Vector Machine and Its Applications to Function Approximation
下载PDF
导出
摘要 支持向量机是一种新的机器学习算法 ,它的理论基础是 Vapnik创建的统计学习理论。它采用结构风险最小化准则 ,在最小化样本点误差的同时 ,缩小模型预测误差的上界 ,从而提高了模型的泛化能力。本文通过 SVM在函数逼近中的应用 ,研究了 SVM的小样本学习、泛化能力和抗噪声扰动能力。 Support vector machine is a new machine learning algorith m, based theoretically on statistic learning theory created by Vapnik. Employing the criteria of structural risk minimization, which minimizes the errors betwee n sample data and model data and decreases simultaneously the upper bound of p redict error of model, SVM's generalization is better than others. The character istics of SVM, such as the strong learning capability based on small samples, th e good characteristic of generalization and insensitivity to random noise distur bance, are shown by its applications to function approximation.
出处 《华东理工大学学报(自然科学版)》 CAS CSCD 北大核心 2002年第5期555-559,568,共6页 Journal of East China University of Science and Technology
基金 宁波市科技攻关项目 (0 0 12 0 0 2 )
关键词 支持向量机 统计学习理论 结构风险最小化准则 核函数 函数逼近 机器学习算法 最小化样本点误差 support vector machine statistic learning theory structura l risk minimization kernel function function approximation
  • 相关文献

参考文献9

  • 1Vapnik V. The Nature of Statistical Learning Theory[M]. New Yerk: Springer,1995. 被引量:1
  • 2Joachims T. Text categorization with support vector machine: Learning with many relevant feature[A]. Proceedings of the 10th European Conference on Machine Learning[C]. Berlin: Springer,1998.137-142. 被引量:1
  • 3Muller K R, Smola A J, Rtsch G. Predicting time series with support vector machines[A]. Artificial Neural Networks-ICANN'97[C]. Berlin: Springer,1997.999-1 004. 被引量:1
  • 4Weston J, Gammerman A, Stitson M O, et al. Support vector density estimation[A]. Advances in Kernel Methods-Support Vector Learning[C]. MA:MIT Press,1998.293-306. 被引量:1
  • 5Scholkopf B, Simard P, Smola A J. Prior knowledge in support vector kernels[A]. Advances in Neural Information Processings Systems[C]. MA:MIT Press,1998.640-646. 被引量:1
  • 6Cortes C, Vapnik V. Support vector networks[J]. Machine Learning,1995,20:273-297. 被引量:1
  • 7Joachims T. Making large-scale SVM learning practical[A]. Advances in Kernel Methods-Support Vector Learning[C]. MA:MIT Press,1998.169-184. 被引量:1
  • 8Platt J C. Fast training of support vector machines using sequential minimal optimization[A]. Advances in kernel Methods-Support Vector Learning[C]. MA:MIT press,1998.185-208. 被引量:1
  • 9Osuna E, Freund R, Girosi F. An improved training algorithm for support vector machines[A].Proceedings of the 1997 IEEE Workshop on Neural Networks for Signal Processing[C]. New York: IEEE Press,1997.276-285. 被引量:1

同被引文献169

引证文献17

二级引证文献94

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部