期刊文献+

微型飞行器的仿生流体力学——昆虫前飞时的气动力和能耗 被引量:20

BIOMIMETIC AERODYNAMICS OF MICRO-AIR VEHICLES --AERODYNAMIC FORCE AND POWER REQUIREMENTS IN FORWARD FLIGHT OF INSECT
下载PDF
导出
摘要 用数值模拟方法研究了昆虫前飞时的气动力和需用功率。由N S方程的数值解提供速度场和压力场 ,从而得到涡量、气动力和力矩 (惯性力矩用解析方法计算 )。基于流场结构 ,解释了非定常气动力产生的原因 ;基于气动力和力矩 ,得到需用功率。悬停飞行中揭示出的 3个非定常高升力机制 (不失速机制 ,拍动初期的快速加速运动 ,拍动后期的快速上仰运动 )在前飞时仍然适用 (即使在快速前飞时 ,V∞ =2~ 2 5m/s,失速涡也不脱落 )。在低速飞行时 (V∞ ≈ 0 5m/s)平衡重量的升力既来自于翅膀的下拍运动也来自于上挥运动 ,并主要由翅膀的升力贡献 ;克服身体阻力的推力主要来自于翅膀的上挥运动 ,由翅膀的阻力贡献。在中等速度下 (V∞ ≈ 1 0m/s) ,升力主要来自于下拍运动 ,其中一半由翅膀升力贡献 ,一半由翅膀阻力贡献 ;推力主要来自上挥运动 ,也是一半由翅膀升力贡献 ,一半由翅膀阻力贡献。在快速飞行时 (V∞ ≈ 2 0m/s) ,升力主要来自于下拍运动 ,主要由翅膀阻力贡献 ;推力来自上挥运动 ,主要由翅膀升力贡献。悬停时 ,下拍和上挥做功同样大 ;前飞时 ,下拍做功较上挥大得多 :V∞ =0 5 ,1 0和 2 0m/s时 ,下拍做的功分别是上挥的 1 6,2 6和 3 5倍。果蝇在悬停飞行时 ,比功率 (单位身体质量的需用功率 )约为 High lift mechanisms and power requirements for forward flight in a small insect were studied by the method of computational fluid dynamics. The Navier-Stokes equations were solved numerically. The solution provided the flow velocity and pressure fields, from which the vorticity wake structure and the unsteady aerodynamic forces and moments were obtained, while the inertial torques due to the acceleration of the wing mass were computed analytically. From the flow structure and force information, insight into the unsteady aerodynamic force generation can be gained. Based on the aerodynamic and inertial torques, the mechanical power was obtained and its variation as a function of flight speed was investigated.
作者 孙茂 吴江浩
出处 《航空学报》 EI CAS CSCD 北大核心 2002年第5期385-393,共9页 Acta Aeronautica et Astronautica Sinica
关键词 飞行器 仿生流体力学 气动力 能耗 昆虫飞行 Aerodynamics Fluid dynamics Insect control Navier Stokes equations
  • 相关文献

参考文献17

  • 1[1]Ellington C P, van den Berg C,Willmott A P. Leading edge vortices in insect flight[J]. Nature, 1996, 384: 626-630. 被引量:1
  • 2[2]Birch J M,Dickinson M H. Spanwise flow and the attachment of the leading-edge vortex on insect wings[J]. Nature, 2001, 412: 729-733. 被引量:1
  • 3[3]Dickinson M H, Lehman F O,Sane S P. Wing rotation and the aerodynamic basis of insect flight[J]. Science, 1999, 284: 1954-1960. 被引量:1
  • 4[4]Sun M. Tang J. Unsteady aerodynamic force generation by a model fruit fly wing in flapping motion[J]. J Exp Biol, 2002, 205: 55-70. 被引量:1
  • 5[5]Sane S P,Dickinson M H. The control of flight force by a flapping wing: lift and drag production[J]. J Exp Biol, 2001, 204: 2607-2626. 被引量:1
  • 6[6]Lehmann F O, Dickinson H D. The changes in power requirements and muscle efficiency during elevated force production in the fruit fly Drosophila melanogaster[J]. J Exp Biol, 1997, 200: 1133-1143. 被引量:1
  • 7[7]Sun M, Tang J. Lift and power requirements of hovering flight in Drosophila[J]. J Exp Biol, 2002, 205(16):2413-2427. 被引量:1
  • 8[8]Ellington C P. The aerodynamics of hovering insect flight Ⅳ Aerodynamic mechanisms[J]. Phil Trans R Soc Lond B, 1984b, 305: 79-113. 被引量:1
  • 9[9]Ellington C P, Machin K E,Casey T M. Oxygen consumption of bumblebees in forward flight[J]. Nature, 1990, 347: 472-473. 被引量:1
  • 10[10]Ellington C P. Limitations on animal flight performance[J]. J Exp Biol, 1991, 160: 71-91. 被引量:1

同被引文献192

引证文献20

二级引证文献74

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部