摘要
圆球土样固结是发现Mandel-Cryer效应的一个著名例子。本文采用将圆球土样的Biot固结解分解为弹性静力学解和渗流拟动态解叠加的方法,利用球Bessel函数的正交性质,给出了定量分析这一著名例子的封闭级数解,并具体分析了Mandel-Cryer效应产生的原因和影响Mandel-Cryer效应的因素。
The Biot consolidation of spherical soil-sample is one of the famous examples in discovering the Mandel-Cryer effect. In this paper the solution of the Biot consolidation of the spherical soil-sample is decomposed into the elastostatic solution and quasi-dynamic solution of fluids in porous media. By means of the orthogonality of spherical Bessel functions, a close form series solution of the problem is presented and quantitative analysis is conducted. The Mandel-Cryer effect is discussed at length.
出处
《工程力学》
EI
CSCD
北大核心
2002年第4期24-28,共5页
Engineering Mechanics
基金
河南省自然科学基金项目(99410001)