摘要
At subzero temperature, the startup capability and performance of polymer electrolyte membrane fuel cell PEMFC deteriorates markedly. The object of this work is to study the degradation mechanism of key compo- nents of PEMFC—membrane-electrode assembly MEA and seek feasible measures to avoid degradation. The ef- fect of freezethaw cycles on the structure of MEA is investigated based on porosity and SEM measurement. The performance of a single cell was also tested before and after repetitious freezethaw cycles. The experimental results indicated that the performance of a PEMFC decreased along with the total operating time as well as the pore size distribution shifting and micro configuration changing. However, when the redundant water had been removed by gas purging, the performance of the PEMFC stack was almost resumed when it experienced again the same subzero temperature test. These results show that it is necessary to remove the water in PEMFCs to maintain stable per- formance under subzero temperature and gas purging is proved to be the effective operation.
At subzero temperature, the startup capability and performance of polymer electrolyte membrane fuel cell PEMFC deteriorates markedly. The object of this work is to study the degradation mechanism of key compo- nents of PEMFC—membrane-electrode assembly MEA and seek feasible measures to avoid degradation. The ef- fect of freezethaw cycles on the structure of MEA is investigated based on porosity and SEM measurement. The performance of a single cell was also tested before and after repetitious freezethaw cycles. The experimental results indicated that the performance of a PEMFC decreased along with the total operating time as well as the pore size distribution shifting and micro configuration changing. However, when the redundant water had been removed by gas purging, the performance of the PEMFC stack was almost resumed when it experienced again the same subzero temperature test. These results show that it is necessary to remove the water in PEMFCs to maintain stable per- formance under subzero temperature and gas purging is proved to be the effective operation.
基金
the National Natural Science Foundation of China (No.20206030)
Ministry of Science and Technology 863Hi-Technology Research and Development Program of China (2005AA501660)