期刊文献+

Effects of Freeze/Thaw Cycles and Gas Purging Method on Polymer Electrolyte Membrane Fuel Cells

Effects of Freeze/Thaw Cycles and Gas Purging Method on Polymer Electrolyte Membrane Fuel Cells
下载PDF
导出
摘要 At subzero temperature, the startup capability and performance of polymer electrolyte membrane fuel cell PEMFC deteriorates markedly. The object of this work is to study the degradation mechanism of key compo- nents of PEMFC—membrane-electrode assembly MEA and seek feasible measures to avoid degradation. The ef- fect of freezethaw cycles on the structure of MEA is investigated based on porosity and SEM measurement. The performance of a single cell was also tested before and after repetitious freezethaw cycles. The experimental results indicated that the performance of a PEMFC decreased along with the total operating time as well as the pore size distribution shifting and micro configuration changing. However, when the redundant water had been removed by gas purging, the performance of the PEMFC stack was almost resumed when it experienced again the same subzero temperature test. These results show that it is necessary to remove the water in PEMFCs to maintain stable per- formance under subzero temperature and gas purging is proved to be the effective operation. At subzero temperature, the startup capability and performance of polymer electrolyte membrane fuel cell PEMFC deteriorates markedly. The object of this work is to study the degradation mechanism of key compo- nents of PEMFC—membrane-electrode assembly MEA and seek feasible measures to avoid degradation. The ef- fect of freezethaw cycles on the structure of MEA is investigated based on porosity and SEM measurement. The performance of a single cell was also tested before and after repetitious freezethaw cycles. The experimental results indicated that the performance of a PEMFC decreased along with the total operating time as well as the pore size distribution shifting and micro configuration changing. However, when the redundant water had been removed by gas purging, the performance of the PEMFC stack was almost resumed when it experienced again the same subzero temperature test. These results show that it is necessary to remove the water in PEMFCs to maintain stable per- formance under subzero temperature and gas purging is proved to be the effective operation.
出处 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2006年第6X期802-805,共4页 中国化学工程学报(英文版)
基金 the National Natural Science Foundation of China (No.20206030) Ministry of Science and Technology 863Hi-Technology Research and Development Program of China (2005AA501660)
关键词 polymer electrolyte membrane fuel cell PEMFC freezethaw cycle electrode structure performance degradation gas purging polymer electrolyte membrane fuel cell PEMFC freezethaw cycle electrode structure performance degrad
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部