期刊文献+

沪深300指数风险价值分析——基于PARCH-VaR方法 被引量:1

下载PDF
导出
摘要 由于我国的沪深300指数收益率序列呈现出三种特性:左偏、尖峰厚尾和波动聚集,PARCH模型可以更完美地刻画序列的分布特征。本文利用PARCH模型对指数收益率序列进行拟合,建立PARCH-VaR模型,用以评估中国沪深300指数的风险。研究结果表明,如果假设残差同时服从三种分布:正态分布、t分布和广义误差分布,基于广义误差分布的PARCH模型计算的VaR值最能够客观地反映中国沪深300指数的风险问题。
作者 李刚 王宝义
机构地区 天津财经大学
出处 《中国商贸》 2012年第10X期100-102,共3页 China Business & Trade
  • 相关文献

参考文献8

二级参考文献37

  • 1赵国庆,魏军.基于信息传播的混合GARCH模型[J].统计研究,2006,23(8):52-56. 被引量:5
  • 2Bekiros, S. D. and Georgoutsos, D. A. 2005. Estimation of value - at - risk by extreme value and conventional methods : a comparative evaluation of their predictive performance, Journal oflnternational Financial Markets, Institutions and Money, 15:209 - 228. 被引量:1
  • 3Chiua, C. - L , Chiangb, S. - M. , Htmga, J. - C. , and Chena, Y. - L 2006. Clearing margin system in the futures markets - applying the value - at - risk model to Taiwan Residents data, Physica A : Statistical Mechanics and its Applications, 367:353 - 374. 被引量:1
  • 4Christoffersen, P. F. 1998. Evaluating interval forecasts, International Economic Review, 39:841 ~ 862. 被引量:1
  • 5Dowd, K. 2006. Measuring market risk, The Wiley finance series, John Wiley & Sons, Chichester, second edition. 被引量:1
  • 6Embrechts, P. , Klti ppelberg, C. , and Mikosch, T. 2001. Modelling extremal events for insurance and finance, The Wiley finance series. Springer, New York, corrected 3rd printing edition. 被引量:1
  • 7Fan, Y. , Wei, Y. - M. , and Xu, W. - X. 2004. Application of VaR methodology to risk management in the stock market in China, Computers & Industrial Engineering, 46:383 -388. 被引量:1
  • 8Fisher, R. and Tippett, L 1928. Limiting forms of the frequency distribution of the largest or smallest member of a sample, Proceedings of the Cambridge Philosophical Society, 24 : 180 - 190. 被引量:1
  • 9Hill, B. M. 1975. A simple general approach to inference about the tail of a distribution, Annals of Statistics, 35, 1975, pp. 1163-1173. 被引量:1
  • 10Jenkinson, A. F. 1955. The frequency distribution of the annual maximum (or minimum) of meteorological elements, Quarterly Journal of the Royal Meteorological Society, 81:158 - 171. 被引量:1

共引文献164

同被引文献12

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部