期刊文献+

Knowledge Discovery and its Applications in Telecommunications Industry 被引量:2

Knowledge Discovery and its Applications in Telecommunications Industry
原文传递
导出
摘要 It is important for telecom companies to make sense of the large number of data they have accumulated over the years. This paper reviews the concepts and the techniques of knowledge discovery in databases (KDD), and surveys applications of this technology in the telecommunications sector all over the world. It also discusses some possible applications of this technology in China, and reports a preliminary result of the first attempt to apply KDD technique in telephone traffic volume prediction. It concludes that KDD is a promising technology that can help to enhance-the competitiveness of China's telecom companies in the face of looming competition in a liberated market. It is important for telecom companies to make sense of the large number of data they have accumulated over the years. This paper reviews the concepts and the techniques of knowledge discovery in databases (KDD), and surveys applications of this technology in the telecommunications sector all over the world. It also discusses some possible applications of this technology in China, and reports a preliminary result of the first attempt to apply KDD technique in telephone traffic volume prediction. It concludes that KDD is a promising technology that can help to enhance-the competitiveness of China's telecom companies in the face of looming competition in a liberated market.
作者 WanYan SiYaqing
出处 《The Journal of China Universities of Posts and Telecommunications》 EI CSCD 1999年第1期46-51,共6页 中国邮电高校学报(英文版)
关键词 knowledge discovery in databases telecommunications data mining knowledge discovery in databases telecommunications data mining
  • 相关文献

同被引文献9

  • 1Han J W,Kamber M.Data mining concepts and techniques[M].Singapore:Elesvier Inc,2006:402-404. 被引量:1
  • 2Ye Yunming,Huang Zhexue,Chen Xiaojun,et al.Neighborhood density method for selecting initial cluster centers in K-means clustering[C]∥Proceedings of PAKDD '06:Advances in Knowledge Discovery and Data Mining,10th Pacific-Asia Conference.Singapore:Springer,2006:189-198. 被引量:1
  • 3He Ji,Lan M,Tan C L,et al.Initialization of cluster refinement algorithms:a review and comparative study[C]∥Proceedings of International Joint Conference on Neural Networks.Budapest:[s.n.],2004:297-302. 被引量:1
  • 4Kaufman L.Finding groups in data:an introduction to cluster analysis[M].New York:Wiley,1990:64-75. 被引量:1
  • 5Katsavounidis I,Kuo C,Zhang Zhen.A new initialization technique for generalized lloyd iteration[J].IEEE Signal Processing Letters,1994,1(10):144-146. 被引量:1
  • 6He Ji.He Ji's Weblog[EB/OL].[2006-04-25].http:∥www.jihe.net/research/ijcnn04. 被引量:1
  • 7陆丽娜,陈亚萍,魏恒义,杨麦顺.挖掘关联规则中Apriori算法的研究[J].小型微型计算机系统,2000,21(9):940-943. 被引量:144
  • 8周欣,沙朝锋,朱扬勇,施伯乐.兴趣度——关联规则的又一个阈值[J].计算机研究与发展,2000,37(5):627-633. 被引量:91
  • 9赵艳厂,宋梅,谢帆,宋俊德.用于不同密度聚类的多阶段等密度线算法[J].北京邮电大学学报,2003,26(2):42-47. 被引量:14

引证文献2

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部