期刊文献+

结合语义信息的行人检测方法 被引量:14

Pedestrian detection method based on semantic information
下载PDF
导出
摘要 随着卷积神经网络(CNN)的提出,行人检测方法的正确率已经得到了很大提升,尽管CNN模型可以学习到目标的不同变化,然而自动驾驶场景下的行人检测依然面临着巨大挑战,主要表现为广泛的尺度变化、光照变化以及不同程度的遮挡。在已有CNN网络的基础上,提出一种更为鲁棒的行人检测方法,其主要思想是在原有检测器的基础上利用像素级的语义信息作为额外的监督来训练CNN。该算法首先提取CNN不同尺度的特征图,在这些特征图上铺设不同大小的目标候选框,添加一层卷积层对这些目标候选框进行分类和回归,同时利用这些特征图生成语义分割图,最终分为两路分别监督目标检测结果和语义分割结果。在最新的行人检测数据集City Persons上的结果表明,结合语义信息可以提升算法的检测成功率,并且不增加算法耗时,在数据集中1 024×2 048 pixels的图像上平均检测耗时仅为0. 3 s一张图像。 Along with the emergence of convolutional neural networks(CNN),pedestrian detection has been largely improved.Although CNN models can learn different variations of objects,pedestrian detection in autonomous driving still faces various challenges,which mainly include large scale variation,illumination variation and occlusion of different levels.In this paper,based on the previous CNN models,a robust pedestrian detection method is proposed.The main idea lies in combining the semantic information into the original detection framework for further supervision.It firstly extracts feature maps of different scales in CNN,based on the paved anchor boxes with various scales,and an additional convolutional layer is appended to be responsible for classification and regression.Meantime,semantic segmentation maps are generated from these feature maps.Finally,two streams are utilized to supervise detection and segmentation.Experiments on the recent CityPersons pedestrian detection dataset show that the semantic segmentation can significantly improve the detection accuracy without taking extra time,and the processing time is only 0.3 second per image in 1 280×384 pixels images in the dataset.
作者 刘丹 马同伟 Liu Dan;Ma Tongwei(Department of Computer Science&Technology,Henan Institute of Technology,Xinxiang 453003,China)
出处 《电子测量与仪器学报》 CSCD 北大核心 2019年第1期54-60,共7页 Journal of Electronic Measurement and Instrumentation
基金 河南省高等学校重点科研项目(19B520005)资助
关键词 自动驾驶 车辆检测 卷积神经网络 pedestrian detection semantic segmentation convolutional neural network
  • 相关文献

参考文献4

二级参考文献80

  • 1贾慧星,章毓晋.车辆辅助驾驶系统中基于计算机视觉的行人检测研究综述[J].自动化学报,2007,33(1):84-90. 被引量:69
  • 2杜友田,陈峰,徐文立,李永彬.基于视觉的人的运动识别综述[J].电子学报,2007,35(1):84-90. 被引量:79
  • 3Geronimo D, Lopez A, Sappa A, et al. Survey of pedestrian de- tection for advanced driver assistance systems[ J]. IEEE, Trans. on Pattern Analysis and Machine Intelligence, 2010, 32 ( 7 ) : 1239- 1258. 被引量:1
  • 4Dollfr P,Wojek C,Schiele B,et al. Pedestrian detection:an e- valuation of the state of the art.IEEE, Trans. on Pattern Analysis and Machine InteUigence,2011,99:1 - 20. 被引量:1
  • 5Aggarwal J, Ryoo M. Human activity analysis: a review[J]. ACM Computing Surveys,2011,43(3),16:1-47. 被引量:1
  • 6Reilly V, Solmaz B, and Shah M. Geometric constraints for hu- man detection in aerial hnagery[ A] .In Proc. ECCV[C] ,2010. 被引量:1
  • 7Andfiluka M, Schnitzspan P, Meyer J, et al. Vision based victim detection from unmanned aerial vehicles [ A ]. In Proc. IEEE/ RSJ International Conference on Intelligent Robots and Systems (IROS) [ C]. Talpei, Taiwan, 2010. 被引量:1
  • 8Dollar P, Belongie S, Pemna P. The fastest pedeslrian detector in the west[A]. In Proc. BMVC[C] ,2010. 被引量:1
  • 9Enzweiler M, Gavrila D. Monocular pedestrian detection: sur- vey and experiments[ J]. IEEE, Trans. on Pattern Analysis and Machine Intelligence, 2009,31 (12) :2179 - 2195. 被引量:1
  • 10Dalai N, Tdggs B. I-listograms of oriented gradients for human detection[ A]. In Proc. 1EEE CVPR[ C], 2005,886 - 893. 被引量:1

共引文献181

同被引文献78

引证文献14

二级引证文献75

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部