期刊文献+

电力信息通信网络流量识别技术研究 被引量:3

Study on Traffic Identification Technologies of Electricity Grid Information and Communication Network
下载PDF
导出
摘要 文章概述了网络流量识别技术的基本原理和发展现状,通过分析和比较基于端口映射、基于有效负载、基于行为特征和基于机器学习的4种网络流量识别方法,得出基于机器学习的流量识别方法更加适用于电力信息通信网,并着重分析了两种基于机器学习的流量识别方法:C4.5决策树算法和神经网络算法。分析结果表明:C4.5决策树算法和神经网络算法都能有效地进行网络流量识别。 This paper summarizes the basic principle and development status of network flow classification techniques.By analyzing and comparing four types of network traffic classification methods which are method based on port mapping,method based on payload,method based on the behavioral characteristics and method based on machine learning,it draws the conclusion that flow classification method based on machine learning is more applicable to electric power information communication network.In the end,this paper emphatically analyzes the two kinds of traffic classification method based on machine learning:C4.5decision tree algorithm and neural network algorithm.
出处 《信息化研究》 2015年第1期10-14,18,共6页 INFORMATIZATION RESEARCH
基金 国家电网公司2014年科技项目"电力信息通信网流量预测与管道智能化关键技术研究及应用"
关键词 电力信息通信网 网络流量识别 机器学习 C4.5算法 神经网络算法 electricity grid information and communication network network traffic identification machine learning C4.5 algorithm neural network
  • 相关文献

参考文献7

二级参考文献47

  • 1陈亮,龚俭,徐选.应用层协议识别算法综述[J].计算机科学,2007,34(7):73-75. 被引量:33
  • 2Moore AW, Zuev D. Internet traffic classification using Bayesian analysis techniques. In: Proc. of the 2005 ACM SIGMETRICS Int'l Conf. on Measurement and Modeling of Computer Systems, Banff, 2005. 50-60. http://www.cl.cam.ac.uk/-awm22 /publications/moore2005internet.pdf. 被引量:1
  • 3Madhukar A, Williamson C. A longitudinal study of P2P traffic classification. In: Proc. of the 14th IEEE Int'l Syrup. on Modeling, Analysis, and Simulation. Monterey, 2006. http://ieeexplore.ieee.org/xpl/ffeeabs_all.jsp?arnumber=1698549. 被引量:1
  • 4Moore AW, Papagiannaki K. Toward the accurate identification of network applications. In: Dovrolis C, ed. Proc. of the PAM 2005. LNCS 3431, Heidelberg: Springer-Verlag, 2005.41-54. 被引量:1
  • 5Karagiannis T, Papagiannaki K, Faloutsos M. BLINC: Multilevel traffic classification in the dark. In: Proc. of the ACM SIGCOMM. Philadelphia, 2005. 229-240. http://conferences.sigcomm.org/sigcomm/2005/paper-KarPap.pdf. 被引量:1
  • 6Roughan M, Sen S, Spatscheck O, Dutfield N. Class-of-Service mapping for QoS: A statistical signature-based approach to IP traffic classification. In: Proc. of the ACM SIGCOMM Internet Measurement Conf. Taormina, 2004. 135-148. http://www.imconf.net/imc-2004/papers/p 135-roughan.pdf. 被引量:1
  • 7Zuev D, Moore AW. Traffic classification using a statistical approach. In: Dovrolis C, ed. Proc. of the PAM 2005. LNCS 3431, Heidelberg: Springer-Verlag, 2005. 321-324. 被引量:1
  • 8Nguyen T, Armitage G. Training on multiple sub-flows to optimise the use of Machine Learning classifiers in real-world IP networks. In: Proc. of the 31 st IEEE LCN 2006. Tampa, 2006. http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=4116573. 被引量:1
  • 9Eerman J, Mahanti A, Arlitt M. Internct traffic identification using machine learning techniques. In: Proc. of the 49th IEEE GLOBECOM. San Francisco, 2006. http://pages.cpsc.ucalgary.ca/-mahanti/papers/globecom06.pdf. 被引量:1
  • 10Erman J, Arlitt M, Mahanti A. Traffic classification using clustering algorithms. In: Proc. of the ACM SIGCOMM Workshop on Mining Network Data (MineNet). Pisa, 2006. http://conferences.sigcomm.org/sigcomm/2006/papers/minenet-01.pdf. 被引量:1

共引文献226

同被引文献12

引证文献3

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部