期刊文献+

一种优化的基于网格的聚类算法

A new optimized clustering algorithm based on grid
下载PDF
导出
摘要 新的基于网格聚类算法(GCAB)利用网格处理技术对数据进行了预处理,并引进了网格密度阈值处理和网格中心点两种技术.实验表明,GCAB算法不仅具有DBSCAN算法准确挖掘各种形状的聚类和很好的噪声处理能力的优点,而且具有较高聚类速度. This paper presents a new grid-based clustering algorithm to preprocess the data using grid processing method. It’s disposed of density threshold of grid by density threshold method and improved the efficiency by the use of the grid center. The result of the experiments demonstrate that GCAB is as accurate in discovering density-changeable clustering and handling of noise as DBSCAN, but GCAB has higher clustering speed.
作者 张横云
出处 《西南民族大学学报(自然科学版)》 CAS 2009年第3期635-637,共3页 Journal of Southwest Minzu University(Natural Science Edition)
基金 四川省教育厅青年项目(2006B095)
关键词 聚类 网格 数据挖掘 密度阈值 中心点 clustering grid data mining (DM) density threshold center
  • 相关文献

参考文献4

二级参考文献69

  • 1刘静,钟伟才,刘芳,焦李成.免疫进化聚类算法[J].电子学报,2001,29(z1):1868-1872. 被引量:43
  • 2张建华,江贺,张宪超.蚁群聚类算法综述[J].计算机工程与应用,2006,42(16):171-174. 被引量:41
  • 3张丽娟,李舟军.分类方法的新发展:研究综述[J].计算机科学,2006,33(10):11-15. 被引量:20
  • 4RAgrawa1 TImie1inSki Aswami.Mining association ru1es between sets of items in 1arge database[J].The ACM SIGMOD Intemationa1 Conf on Management of Data, Washington, DC,1993,. 被引量:1
  • 5Han JW, Kambr M. Data Mining Concepts and Techniques. Beijing: Higher Education Press, 2001. 145-176. 被引量:1
  • 6Kaufan L, Rousseeuw PJ. Finding Groups in Data: an Introduction to Cluster Analysis. New York: John Wiley & Sons, 1990. 被引量:1
  • 7Ester M, Kriegel HP, Sander J, Xu X. A density based algorithm for discovering clusters in large spatial databases with noise. In:Simoudis E, Han JW, Fayyad UM, eds. Proceedings of the 2nd International Conference on Knowledge Discovery and Data Mining.Portland: AAAI Press, 1996. 226-231. 被引量:1
  • 8Guha S, Rastogi R, Shim K. CURE: an efficient clustering algorithm for large databases. In: Haas LM, Tiwary A, eds. Proceedings of the ACM SIGMOD International Conference on Management of Data. Seattle: ACM Press, 1998. "73-84. 被引量:1
  • 9Agrawal R, Gehrke J, Gunopolos D, Raghavan P. Automatic subspace clustering of high dimensional data for data mining application. In: Haas LM, Tiwary A, eds. Proceedings of the ACM SIGMOD International Conference on Management of Data.Seattle: ACM Press, 1998.94-105. 被引量:1
  • 10Alexandros N, Yannis T,Yannis M. C^2P: clustering based on closest pairs. In: Apers PMG, Atzeni P, Ceri S, Paraboschi S,Ramamohanarao K, Snodgrass RT, eds. Proceedings of the 27th International Conference on Very Large Data Bases. Roma:Morgan Kaufmann Publishers, 2001. 331-340. 被引量:1

共引文献187

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部