摘要
设X为Banach空间,X~*是它的共轭空间,在X自反的情形下,关于X的子集D到X~*的单调算子成立锐角原理.本文对一般Banach空间X,考虑X~*的子集A到X的单调算子,不需要假设X及X~*自反,证明了单调算子的锐角原理,Minty-Browder定理及强单调映象原理.
Let X be a Banach space, X be the dual space of X. In this paper, considering the monotone operator from A in X into X, we show that the principle of acute angles, Minty-Browder’s theorem and the principle of strongly monotone mapping are still valid, however , X and X need not to be reflective.
出处
《湘潭师范学院学报(社会科学版)》
1992年第6期1-4,共4页
Journal of Xiangtan Normal University(Social Science Edition)
关键词
单调算子
w紧集
锐角原理
强单调映射
有限交性
Monotone operator
w*-compact set
Principle of acute angles
Strongly monotone mapping
Finite intersection property.