期刊文献+

知识图谱中的关系方向与强度研究 被引量:5

Study on direction and strength of relation based on knowledge graph
下载PDF
导出
摘要 目前普遍的知识图谱构建思路是图谱中的关系标签采用文字描述,这样很难对图谱中的关系进行计算。针对这个问题,提出了关系方向、强度因子和时态因子的概念,关系的正负、强度和时态可以通过有监督机器学习的方法形成自动模型,从而在领域知识图谱中实现关系的量化计算。这种知识图谱构建方法在计算事件舆情走向、计算企业合作与竞争情况变化、分析销售人员市场拓展情况等领域,形成了一种新的数据分析模式,对人工智能在具体行业的落地应用很有意义。 In current popular ideas for knowledge graph construction,the relations in graphs were described by words,it is difficult to calculate the relations in graphs.To this issue,concepts of the direction,intensive factors,temporal factors of relations were proposed.Automatic models of positive,negative,intensive and temporal relations can be formed through supervised machine learning,so that the quantitative calculation of the relations can be implemented in the domain knowledge graph.This method forms a new idea in many areas such as calculating the trend of incidents,calculating the change of cooperation and competition between enterprises,and analyzing the market expansion of sales people.It is meaningful for artificial intelligence to be applied in specific industries.
作者 臧根林 王亚强 吴庆蓉 占春丽 谢新扬 ZANG Genlin;WANG Yaqiang;WU Qingrong;ZHAN Chunli;XIE Xinyang(TRS Knowledge Graph Research Institute,Guangzhou 510665,China;Guangzhou TRS Big Data Co.,Ltd.,Guangzhou 510665,China)
出处 《大数据》 2019年第3期96-103,共8页 Big Data Research
关键词 知识图谱 关系方向 关系强度 负关系 时态关系 knowledge graph direction of relation strength of relation negative relation temporal relation
  • 相关文献

参考文献6

二级参考文献214

共引文献921

同被引文献36

引证文献5

二级引证文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部