期刊文献+

利用震级均值特性建立有上限震级概率模型对2017年九寨沟7.0级地震的余震概率预测 被引量:3

Probabilistic prediction for the earthquake sequence of 2017 Jiuzhaigou, Sichuan, M_S 7.0 by using limited-magnitude probability distribution based on the average magnitudes of aftershock sequence
原文传递
导出
摘要 震级均值ma是震级m以上事件的震级平均值.研究了九寨沟7. 0级地震余震序列的震级均值ma之后,发现两个与ma有关的线性关系:(1) lg N'=a'-b'ma,(2) ma=c+dm.第一个关系式不仅与G-R关系的形式相同,并且也可以用来估计完备震级Mc.令ΔN=lg N-lg N',lg N从目录统计得到,lg N'是(1)式给出的预测值.在ΔN与ma的散点图上,ΔN第一次突破0轴对应的ma值可以很好地估计完备性震级Mc.第二个关系式称为震均关系(A-M关系),只能从实际目录统计,不能从已有的统计关系推导出来.若震级是连续随机变量且G-R关系在完备震级Mc以上的任意的震级范围[m,∞]成立,将A-M关系代入极大似然法求b值的Aki-Utsu公式,可得到b值函数B(m)=-r/[c-(1-d) m].对B(m)积分可得(3) lg N=p+klg(c-qm),其中q=1-d.从(3)式可导出(4) F(M≥m)=[(cqm)/(c-qm0]k.(3)和(4)分别是有上限的震级-频度关系及其条件概率分布函数.按以下步骤确定参数c、q、p、k:第一步,拟合线性关系(1) lg N'=a'-b'ma,用ΔN=lg N-lg N'确定完备震级Mc,并统计Mc以上余震序列的震级均值mca.第二步,利用余震序列的最大震级不可能超过主震震级Mm的特点,假定余震序列震级上限mu=Mm+0. 5,通过点(mu,mu)和点(Mc,mca)求解A-M关系(2) ma=c+dm,获得参数c、q.第三步,拟合lg(c-qm)和相应的lg N,确定参数p、k.根据以上步骤,用震后2 h的余震目录拟合各项参数,获得概率分布函数F(M≥m)=[(0. 62-0. 0827m)/(0. 62-0. 0827m0]8. 8602.据此估计在后续累计发生0级以上余震10000次的条件下,至少发生一次的概率为63%、10%和1%对应的的震级分别为4. 8、5. 4、5. 9级.据蒋海昆等(2006)的多震型序列定义,后续须至少发生一次6. 4级以上地震,才能认为九寨沟7. 0级余震序列是多震型序列,而6. 4级以上地震至少发生一次的概率仅为4. 02E-4.根据这些概率计算,在震后2 h可以作出的预测意见为:九寨沟7. 0级地震的余震序列类型为主震-余震型,最� The average magnitude ma is defined as the mean magnitude of earthquakes with magnitude m and larger.After investigating the aftershock sequence of Jiuzhaigou earthquake,MS 7,we have found out two linear relationships of ma:(1)lgN′=a′-b′ma,(2)ma=c+dm.The first relation has the same form as the G-R relation,and can be used to estimate the completeness magnitude Mc.LetΔN=lgN-lgN′,where lgN can be directly obtained from the statistics of sequence catalog and lgN′can be calculated from equation(1).Then the completeness magnitude Mc can be estimated by the value of ma where theΔN just crosses the 0-axis of the graph ofΔN versus ma.The second relation is called A-M relationship.It can only be obtained from observing the statistical graphs of ma vs.m,and cannot be derived from any existing statistical relations.Suppose that G-R relation is applicable for any continuous range[m,∞]where m is above the completeness magnitude Mc,a function of b-value will be written as B(m)=-r/[c-(1-d)m]by replacing the mean magnitude with A-M relation in the Aki-Utsu’s formula for b-value.Then equation(3)lgN=p+klg(c-qm)can be obtained from the integral of B(m),and equation(4)F(M≥m)=[(c-qm)/(c-qm0)]k will be derived from equation(3).In equations(3)and(4),the parameter q=1-d.Equation(3)is a new magnitude-frequency relationship with upper-bound magnitude and equation(4)is the conditional probability distribution function for limited magnitude range.The parameters c,q,p and k can be determined by following procedures.The first step,fit the linear relationship(1)lgN′=a′-b′ma and determine the complete magnitude Mc by observing the graph ofΔN versus ma.Then estimate mca,the mean magnitude of the aftershocks with magnitude Mc and larger.Next,assume mu,the upper-limit magnitude of the aftershock sequence as Mm+0.5,in the light of the characteristic that the maximum magnitude of the aftershock sequence do not exceed the magnitude of the mainshock,Mm.Solve the A-M relation ma=c+dm by fitting points(mu,mu)and(Mc,mca)for esti
作者 叶友清 苏金蓉 易桂喜 杨贤和 YE You-qing;SU Jin-rong;YI Gui-xi;YANG Xian-he(Sichuan Earthquake Agency,Chengdu 610041,China)
机构地区 四川省地震局
出处 《地球物理学进展》 CSCD 北大核心 2019年第2期489-499,共11页 Progress in Geophysics
基金 国家自然科学基金(41574047) 国家重点研发计划(2018YFC1504501-02)共同资助
关键词 震级均值 震均关系(A-M关系) b值函数B(m) 震级-频度关系 震级概率分布 余震序列 Average magnitude A-M relationship b-value function B(m) Magnitude-frequency relation Magnitude probability distribution Aftershock sequence
  • 相关文献

参考文献7

二级参考文献73

共引文献137

同被引文献50

引证文献3

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部