期刊文献+

基于υ-SVM的汽轮机热耗率回归模型研究 被引量:8

Study on Heat Rate Regression Model of Steam Turbines Based on υ-SVM
下载PDF
导出
摘要 为了直接反映可控边界参数与热耗率的映射关系,基于υ-SVM建立了可控边界参数与热耗率的回归模型,选取与热耗率关联性强的可控边界参数作为输入参数,并应用灰色关联度模型进行验证,详细地描述了基于Libsvm软件建立υ-SVM回归模型的过程,并与BP神经网络模型进行对比.结果表明:在小样本情况下,υ-SVM模型回归精度更高,具有更好的泛化能力;在输入参数小幅波动的情况下,υ-SVM模型的输出结果基本稳定,具有很好的鲁棒性,满足实际应用的精度要求. To directly reflect the mapping relation between controllable boundary parameters and heat rate of steam turbine,a regression model based onυ-SVM was established by taking the controllable boundary parameters with strong relevance with heat rate as the input parameters,which was subsequently verified using gray correlation degree model.The process of establishingυ-SVM regression model based on Libsvm software was described in detail,and the new model was compared with that of the BP neural network.Results show that under small-sample circumstances,the υ-SVM model has higher regression precision and better generalization capability;whereas under slight fluctuation of input parameters,the outputs of υ-SVM model are basically stable,indicating that the model has good robustness and can meet precision requirement of actual applications.
出处 《动力工程学报》 CAS CSCD 北大核心 2014年第8期606-611,645,共7页 Journal of Chinese Society of Power Engineering
关键词 ν-SVM 支持向量机 汽轮机 热耗率 回归模型 可控边界参数 υ-SVM support vector machine steam turbine heat rate regression model controllable boundary parameter
  • 相关文献

参考文献15

二级参考文献79

共引文献254

同被引文献69

引证文献8

二级引证文献73

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部