期刊文献+

基于门店位置的协同过滤推荐算法 被引量:2

下载PDF
导出
摘要 传统的协同过滤推荐算法一般基于用户对商品的评分而并未考虑用户的地理位置信息以及受到数据稀疏性问题的影响很大,该文针对以上问题,提出了一种基于用户地理位置的协同过滤推荐算法,根据用户的距离计算用户相似度,结合用户的评分信息对传统的user-based算法进行改进。实验结果表明,在对商品进行top-k推荐时,改进后的算法具有更好的推荐效果,推荐精确率和召回率都有所提升。
作者 刘波
出处 《电脑知识与技术》 2018年第11X期12-14,共3页 Computer Knowledge and Technology
  • 相关文献

参考文献3

二级参考文献80

  • 1Cranshaw J, Toch E, Hong J, et al. Bridging the gap between physical location and online social networks// Proceedings of the 12th ACM International Conference on Ubiquitous Computing ( UbiComp 2010 ). Copenhagen, Denmark, 2010:119-128. 被引量:1
  • 2Yadav M S, Valck K D, Hennig-Thurau T, Hoffman D L. Social commerce: A contingency frameworks for assessing marketing potential. Journal of Interactive Marketing, 2013, 27(4) : 311-323. 被引量:1
  • 3Sarwat M, Eldawy A, Mokbel M F, Riedl J. PLUTUS: Leveraging location-based social networks to recommend potential customers to venues//Proceedings of the 14th International Conference on Mobile Data Managemant (MDM 2013). Milan, Italy, 2013:26-35. 被引量:1
  • 4Qu Y, Zhang J. Trade area analysis using user generated mobile location data//Proceedings of the 22nd International Conference on World Wide Web (WWW 2013). Rio de Janeiro, Brazil, 2013:1053-1064. 被引量:1
  • 5Stewart K, Glanville J L, Bennett D A. Exploring spatiotem- poral and social network factors in community response to major flood disaster. The Professinonal Geographer, 2014, 66(3) : 421-435. 被引量:1
  • 6Gao H, Barbier G, Goolsby R. Harnessing the crowd sourcing power of social media for disaster relief. IEEE Intelligent Systems, 2011, 26(3): 10-14. 被引量:1
  • 7Bahir E, Peled A. Identifying and tracking major events using geo-social networks. Social Science Computer Review, 2013, 31(4): 458-470. 被引量:1
  • 8McArdle G, Lawlor A, Furey E, Pozdnoukhov A. City-scale traffic simulation from digital footprints//Proceedings of the ACM SIGKDD International Workshop on Urban Computing (UrbComp 2012). Beijing, China, 2012:47-54. 被引量:1
  • 9Liang Y, CaverIee J, Cheng Z, Kameth K Y. How big is the crowd ? Event and location based population modeling in social media//Proceedings of the 24th ACM Conference on Hypertext and Social Media (HT2013). Paris, France, 2013:99-108. 被引量:1
  • 10Caverlee J, Cheng Z, Sui D Z, Kamath K Y. Towards geo-social intelligence: Mining, analyzing, and leveraging geospatial footprints in social media. IEEE Data Engineering Bulletin, 2013, 36(3): 33-41. 被引量:1

共引文献101

同被引文献16

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部