期刊文献+

基于Apriori算法的图书推荐应用研究 被引量:1

Research on the Application of Books Recommendation based on Apriori
下载PDF
导出
摘要 随着机器学习技术的不断发展,机器学习在社会各个邻域的应用也越来越广泛。在校园图书馆中使用机器学习的方法来实现对学生借阅方面的画像,把握学生阅读规律,精确地向不同的学生推荐其感兴趣的书籍,从而提升学生的学习兴趣就越发显得重要。鉴于此,提出使用机器学习中Apriori模型的方法来分析不同学生的阅读兴趣,并推荐其可能感兴趣的书籍。实验结果表明,所提方法能较准确地分析出学生的借阅兴趣,可作为图书馆书籍推荐分析的有效依据。 With the development of machine learning technology, it is more and more widely used in every neighborhood of society.It is more and more important to recommend books of interest to different students to promote their interest in learning. Therefore, a method of using Apriori model in machine learning to analyze the reading interest of different students is proposed. The experimental results show that the proposed method can accurately analyze the students' interest in borrowing books and can be considerate as an effective basis for library books recommendation analysis.
出处 《电脑知识与技术》 2018年第4X期211-212,共2页 Computer Knowledge and Technology
基金 基于云平台与一卡通大数据的图书推荐的研究与应用(18CZ0047)
关键词 大数据 机器学习 APRIORI 推荐 图书 big data machine leaning Apriori recommend books
  • 相关文献

参考文献5

二级参考文献29

  • 1胡吉明,鲜学丰.挖掘关联规则中Apriori算法的研究与改进[J].计算机技术与发展,2006,16(4):99-101. 被引量:59
  • 2Chen M S,Han J W,Yu P S. Data Mining: An Overview from a Database Perspective[ J]. IEEE Transactions on Knowledge and Data Engineering, 1996,8 (6) : 866 - 883. 被引量:1
  • 3Han J W,Kamber M. Data Mining Concepts and Techniques[ M]. Beijing: Higher Education Press,2001. 被引量:1
  • 4Agrawal R, Srikant R. Fast algorithms for mining association rules in large databases [ C ]. Proceedings of the 20th International Conference on Very Large Data Bases, September 1994. 被引量:1
  • 5Han E H, Karypis G, Kumar V. Scalable parallel data mining for association rules[ C ]. ACM SIGMOD International Conference on Management of Data, May, 1997. 被引量:1
  • 6Agrawa! R, Imielinski T, Swami A. Mining association rules between. sets of items in large databases[ C ]. Proceedings of the ACM SIGMOD International Conference on Management of Data ; May, 1993. 被引量:1
  • 7Wur S Y, Leu Y H. An effective Boolean algorithm for mining association rules in large databases [ C ]. Database Systems for Advanced Applications, 1999 : Proceedings, 6th International Conference, April, 1999:19 -21. 被引量:1
  • 8Li S, Hong S, Ling C. New algorithms for efficient mining of association rules [ C]. Proceedings of the 7^th Symposium on the Frontiers of Massively Parallel Computation, February, 1999. 被引量:1
  • 9Park J S,Chen M S,Yu P S. Using a hash-based method with transaction trimming for mining association rules[ J]. Knowledge and Data Engineering, IEEE Transactions 1997,9(5 ) : 813 - 825. 被引量:1
  • 10陈安,陈宁,周龙骧.数据挖掘技术与应用[M].北京:科学出版社,2006. 被引量:8

共引文献161

同被引文献2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部