期刊文献+

基于Android的菜谱个性化推荐系统的设计与开发 被引量:3

The Design and Development of Personalized Recommendation System Based on Android
下载PDF
导出
摘要 据调查,当今社会中,有不少人存在"选择吃什么"的困难症,为解决这一问题,文章设计了一种菜谱个性化推荐系统。该系统分为客户端和服务端,服务端进行系统的推荐计算,该推荐计算应用了基于内容的推荐算法,应用过程如下:首先,当一个新用户在客户端注册该系统时,系统会收集用户偏好属性以及用户基本信息;其次,系统把收集到的用户基本信息和用户偏好属性提交到服务端,服务端通过已经建立好的用户偏好属性、菜谱属性、用户信息模型进行推荐计算;最后,服务端把计算结果反馈到客户端,客户端显示给用户的推荐列表。实验结果表明,该推荐系统可以较为准确地给用户推荐菜谱。 According to the survey, in today's society, there are many people exist "choose to eat what" difficulties. To solve this problem, the article designed a recipe personalized recommendation system. The system is divided into the client and the server,the server side of the system recommended calculation that its the content-based recommendation algorithm. First of all, when a new user in the client registration of the system, the system will collect user preferences and user basic information, and then the system to collect the basic user information and user preferences attribute submitted to the server, the server through that has established a user preferences attributes, recipe attributes, user information model recommended calculation, and then the results of the feedback to the client, the formation of recommended list recommended to the user. Experimental results show that the recommendation system can be more accurate to the user recommended recipes.
出处 《电脑知识与技术(过刊)》 2017年第7X期81-82,100,共3页 Computer Knowledge and Technology
基金 国家自然科学基金(61562086 61462079 61363083 61262088) 新疆"万人计划"后备项目(wr2015bj01)
关键词 选择困难 菜谱 个性化 推荐系统 基于内容推荐 select difficulty recipes personalization recommendation system content-based recommendation
  • 相关文献

参考文献7

二级参考文献158

  • 1杨博,赵鹏飞.推荐算法综述[J].山西大学学报(自然科学版),2011,34(3):337-350. 被引量:87
  • 2余力,刘鲁.电子商务个性化推荐研究[J].计算机集成制造系统,2004,10(10):1306-1313. 被引量:104
  • 3张瑞华,周延泉,王枞,李蕾.移动终端离线浏览系统的新闻推荐服务研究[J].北京邮电大学学报,2006,29(6):21-24. 被引量:5
  • 4Shardanand U, Maes P. Social information filtering: Algorithms for automating "Word of Mouth". In: Proc. of the Conf. on Human Factors in Computing Systems. New York: ACM Press, 1995.210-217. 被引量:1
  • 5Hill W, Stead L, Rosenstein M, Furnas G. Recommending and evaluating choices in a virtual community of use. In: Proc. of the Conf. on Human Factors in Computing Systems. New York: ACM Press, 1995. 194-201. 被引量:1
  • 6Resnick P, Iakovou N, Sushak M, Bergstrom P, Riedl J. GroupLens: An open architecture for collaborative filtering of netnews. In: Proc. of the Computer Supported Cooperative Work Conf. New York: ACM Press, 1994. 175-186. 被引量:1
  • 7Baeza-Yates R, Ribeiro-Neto B. Modern Information Retrieval. New York: Addison-Wesley Publishing Co., 1999. 被引量:1
  • 8Murthi BPS, Sarkar S. The role of the management sciences in research on personalization. Management Science, 2003,49(10): 1344-1362. 被引量:1
  • 9Smith SM, Swinyard WR. Introduction to marketing models. 1999. http://marketing.byu.edu/htmlpages/courses/693r/modelsbook/ preface.html 被引量:1
  • 10Adomavicius G, Tuzhilin A. Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions. IEEE Trans. on Knowledge and Data Engineering, 2005,17(6):734-749. 被引量:1

共引文献665

同被引文献8

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部