期刊文献+

一种改进的蚁群算法

An Improved Ant Colony Algorithm
下载PDF
导出
摘要 蚁群算法是一种元启发算法,其具有比较好的发现优化问题较好解的能力,但还有一些不足。该文为了克服算法存在一些不足,对算法提出了改进,通过改变蚁群算法信息素的更新策略,提高算法的性能,并将改进后的算法应用于求解TSP问题,数据结果显示该算法发现较好解的能力较强。 Ant colony algorithm is a meta-heuristic algorithm, which has a relatively good ability to find better solutions for optimi-zation problems, but there are some drawbacks.In this paper, the algorithm in order to overcome the drawbacks of the proposed al-gorithm, which by changing the ant colony algorithm pheromone update strategy to improve the performance of the algorithm,andimproved algorithm is applied to solve TSP problem, the data showed that the algorithm found a strong ability to better solution.
作者 赵吉东
机构地区 山东英才学院
出处 《电脑知识与技术(过刊)》 2015年第3X期192-193,共2页 Computer Knowledge and Technology
基金 山东英才学院校级一般课题(13YCYBZR01)
关键词 蚁群算法 信息素更新 TSP Ant colony algorithm pheromone update TSP
  • 相关文献

参考文献7

二级参考文献29

  • 1HUANG Lan , ZHOU Chunguang and WANG Kangping(College of Computer Science and Technology, Jilin University, Changchun 130012, China).Hybrid ant colony algorithm for traveling salesman problem[J].Progress in Natural Science:Materials International,2003,13(4):295-299. 被引量:15
  • 2马良,朱刚,宁爱兵.蚁群优化算法[M].北京:科学出版社,2007:12-13,26-27. 被引量:12
  • 3Dorigo M, Stutzle T. Ant colony optimization[M]. Cambridge: MIT Press/Bradford Books, 2004. 被引量:1
  • 4Dorigo M, Gambardella L M. Ant colony system: A cooperative learning approach to the traveling salesman problem[J]. IEEE Trans on Evolutionary Computation, 1997, 1(1): 53-66. 被引量:1
  • 5Nonsiri S, Supratid S. Modifying ant colony optimization[C]. IEEE Conf on Soft Computing in Industrial Applications. 2008: 95-100. 被引量:1
  • 6Thomas Stutzle T, Holger H Hoos. Max-min ant system[J]. Future Generation Computer Systems, 2000, 16(8): 889- 914. 被引量:1
  • 7Colorni A, Dorigo M, ManiezzoV, et al. Distributed optimization by ant colonies[C]//Proceedings of the 1st European Conference on Artificial Life, 1991. 134-142. 被引量:1
  • 8Thomas Stutzle, Holger Hoos. The MAX-MIN Ant System and Local Search for the TraVeling Sales- man Problem[C]//Irrdianapolis, Indiana, 'USA, Proceedings of the IEEE International Conference on EVolutionary Computation, 1997:3-13. 被引量:1
  • 9宋锦娟,白艳萍.一种改进的蚁群算法及其在TSP中的应用[J].数学实践与认识,2012,42(18):154-162. 被引量:1
  • 10COLORM A,DORIGO M,MINIEZZO V. Distributed optimization by ant colonies[A].Paris France:Elsevier Publishing,1991.134-142. 被引量:1

共引文献66

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部