期刊文献+

基于SIFT特征匹配的精准图像配准算法 被引量:6

Algorithm of Image Registration Based on the Precise SIFT Feature Matching
下载PDF
导出
摘要 尺度不变的特征变换方法(SIFT)具有对图像尺度缩放、旋转、放射变换以及亮度变化保存不变的优点,该文提出了一种基于SIFT算法的精准的图像配准方法。首先利用SIFT算法提取图像中的特征点;接着对这些特征点采用相似性准则中的欧式距离进行匹配,得到初始匹配对;由于初始匹配对中存在误匹配对,从而造成匹配的精度不足,因此提出一种改进后的RANSAC(随机取样一致性性算法)消除误匹配对。此外该文通过多次实验,选取SIFT算法中合适的比例阀值,提高配准的精度。实验结果表明,该方法既继承了SIFT算法的鲁棒性,又提高了匹配精度。 Scale Invariant Feature transform(SIFT)has advantages of scale scaling,rotating,radiation transform and unchanged brightness changes on image.A kind of precise SIFT algorithm based on image registration is proposed.First,Extract feature points of images using the SIFT algorithm.Then,get initial matching points from these feature points by the matching method of similarity criterion in Euclidean distance.The improved RANSAC which for eliminating mismatch points is proposed due to existing mismatching points in initial matching points,causing the matching of precision insufficient.Furthermore,in order to improve the accuracy,we select suitable threshold in SIFT through multiple tests.The experiments shoe that this method both inherit the robustness of SIFT and improve the precision of matching.
出处 《电脑知识与技术(过刊)》 2011年第1X期400-402,共3页 Computer Knowledge and Technology
关键词 SIFT 欧式距离 改进后的RANSAC 图像拼接 精度 SIFT euclidean distance improved RANSAC image fusion precision
  • 相关文献

参考文献2

二级参考文献14

  • 1黄铜城,胡运发.基于多分辨率特征的图像镶嵌技术[J].计算机工程,2006,32(7):23-25. 被引量:4
  • 2高丽 韦群.基于小波分析的图像镶嵌融合研究与实现.指挥技术学院学报,2001,12(5):29-32. 被引量:5
  • 3Lowe D G. Distinctive image features from scale-invariant keypoints[J]. International Journal of Computer Vision, 2004,60(2) : 91 - 110. 被引量:1
  • 4Beis J S. Lowe D G. Shape indexing using approximate nearest-neighbour search in high-dimensional spaces [C]//Proeeedings of the IEEE 1997 Computer Society Conference on Computer Vision and Pattern Recognition. Puerto Rico: [s. n. ],1997 : 1000-1006. 被引量:1
  • 5Shum H Y, Szeliski R. Construction of panoramic image mosaics with global and local alignment[J]. International Journal of Computer Vision, 2000,36(2) :101 - 130. 被引量:1
  • 6Mallat S G. Multifrequency channel decomposition of images and wavelet model[J].IEEE Transact, Speech, Signal Processing, 1989, 37(12) :2091-2110. 被引量:1
  • 7陈昕,向健勇,杨宜禾.不变性理论用于空中目标的识别[J].红外与毫米波学报,1997,16(1):39-44. 被引量:16
  • 8Knops Z F, Maintz J B A, Viergever M A, et al.Normalized mutual information based registration using k-means clustering and shading correction[J]. Medical Image Analysis, 2006, 10(3): 432-439. 被引量:1
  • 9Ville O, Janne H. Image registration using blur-invariant phase correlation[J]. IEEE Signal Processing Letters, 2007, 14(7):449-452. 被引量:1
  • 10Lucchese L, Leorin S, Cortelazzo G M. Estimation of two-dimensional affine transformations through polar curve matching and its application to image mosaicking and remote-sensing data registration[J]. IEEE Transactions on Image Processing, 2006, 15 (10) : 3008-3019. 被引量:1

共引文献41

同被引文献64

引证文献6

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部